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Abstract

We analyse two soft notions of stable extensions
in abstract argumentation, one that weakens the re-
quirement of having full range and one that weak-
ens the requirement of conflict-freeness. We then
consider optimisation problems over these two no-
tions that represent optimisation variants of the
credulous reasoning problem with stable seman-
tics. We investigate the computational complex-
ity of these two problems in terms of the complex-
ity of solving the optimisation problem exactly and
in terms of approximation complexity. We also
present some polynomial-time approximation algo-
rithms for these optimisation problems and investi-
gate their approximation quality experimentally.

1 Introduction
Abstract argumentation frameworks (AAFs) [Dung, 1995] are
an approach for modelling argumentative scenarios that rep-
resents arguments as nodes in a directed graph, where a di-
rected edge represents an attack from one argument to an-
other. Reasoning in AAFs consists of identifying sets of argu-
ments (extensions) that form a plausible outcome of the argu-
mentation. Several different semantical approaches for for-
malising plausibility in this context have been proposed, see
e. g. [Dung, 1995; Baroni et al., 2018]. In this work, we focus
on stable semantics. A stable extension is a conflict-free set
of arguments (no argument in the set attacks some other argu-
ment in the set) that attacks all arguments not contained in the
set. Stable semantics is a very strong semantical notion and
stable extensions are not guaranteed to exist [Dung, 1995].

In this work, we consider two soft notions of stable se-
mantics that weaken the requirements of stable semantics by
allowing to consider sets that do not necessarily attack all
other arguments or are not necessarily conflict-free. While
qualitative approaches for this motivation have been investi-
gated with the stage [Verheij, 1996] and semi-stable seman-
tics [Caminada, 2006] before, we consider here a quantitative
treatment. In particular, a set of arguments is called a k-stable
extension (with k ∈ N) iff is conflict-free and the number of
arguments contained in the set and attacked by the set is at
least k. Therefore, k-stable extensions with larger values of

k are “closer” of being a stable extension. The other vari-
ant we consider is the k-stable* extension, which attacks all
arguments it does not contain and “respects” at least k at-
tacks (meaning that for at least k attacks, it is not the case
that both arguments involved in the attack are in the exten-
sion). These notions have several applications. For one, they
allow to rank sets of arguments in terms of their closeness
of being stable extensions, see e. g. [Skiba et al., 2021] for a
general treatment of this problem area. This allows to derive
a graded notion of the acceptability of arguments and there-
fore judge their strength in a more fine-grained manner, as
in ranking-based semantics [Amgoud and Ben-Naim, 2013;
Bonzon et al., 2016]. Another application is in enforcement
[Baumann et al., 2021], which addresses the problem of how
to change an AAF in order to enforce arguments to become
acceptable. Here, a set of arguments that is already “close” of
being stable is likely to be easier to enforced than a set of ar-
guments that are not “close” of being stable. The approaches
considered in this work can therefore be used to guide practi-
cal approaches to enforcement.

Our analysis of the above two notions in this paper fo-
cusses on computational issues and, in particular, on the prob-
lem of approximation. The term approximation has received
quite some attention in the context of AAFs in recent years
[Kuhlmann and Thimm, 2019; Craandijk and Bex, 2020;
Malmqvist et al., 2020; Malmqvist, 2022; Delobelle et al.,
2023; Thimm, 2021] and the International Competition on
Computational Models of Argumentation (ICCMA)1 even fea-
tured approximation tracks in 2021 and 2023. However,
these tracks and the aforementioned works are actually about
heuristic algorithms for solving decision problems (such as
the acceptability of arguments wrt. certain semantics) by re-
lying, e. g., on heuristics informed by machine learning mod-
els [Kuhlmann and Thimm, 2019; Craandijk and Bex, 2020;
Malmqvist et al., 2020; Malmqvist, 2022]. But in theo-
retical computer science the term approximation [Vazirani,
2003] actually refers to algorithms that feature a theoretically
guaranteed approximation quality when solving optimisation
problems. We consider this definition as well in the present
work. In particular, we consider the optimisation problems
of finding the maximal value k, such that a given argument
is in a k-stable or k-stable* extension, which thus represent

1http://argumentationcompetition.org/
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graded variants of the classical credulous reasoning problem
for stable semantics. We study the computational complex-
ity of these optimisation problems from two perspectives.
First, we determine the complexity for solving these opti-
misation problems exactly and show that they are FPNP[log]-
complete. Moreover, we analyse the hardness of approxi-
mation and show that the problem is Poly-APX-complete for
k-stable semantics and Log-APX-hard for k-stable* seman-
tics (both under PTAS-reductions). So both problems are, in
general, very hard to approximate. Nonetheless, we present
several simple polynomial-time approximation algorithms for
these problems and show experimentally that their average
approximation quality is rather good.

To summarise, the contributions of the paper are as follows.
1. We present two soft notions of stable semantics for ab-

stract argumentation and analyse their general properties
(Section 3).

2. We consider the two corresponding optimisation prob-
lems and show that they are both FPNP[log]-complete
(Section 4).

3. We analyse the complexity of approximation of these
optimisation problems and show that they are Poly-APX-
complete and Log-APX-hard (under PTAS-reductions),
respectively (Section 5).

4. We present four polynomial-time approximation algo-
rithms, two for k-stable semantics and two for k-stable*
semantics (Section 6).

5. We analyse the general feasibility of these approxima-
tion algorithms in an experimental study and show that
they perform quite good in practice (Section 7).

Section 2 gives some necessary background on abstract ar-
gumentation and Section 8 concludes the paper. Proofs of
technical results can be found in an online appendix.2

2 Abstract argumentation
We consider abstract argumentation frameworks [Dung,
1995] defined as follows.
Definition 1. An abstract argumentation framework (AAF)
F is a tuple F = (A,R) where A is a (finite) set of arguments
and R ⊆ A×A is the attack relation.

For (a, b) ∈ R we also write aRb and say that a is an
attacker of b. For an AF F = (A,R) and any set S ⊆ A we
write

S+
F = {b ∈ A | ∃a ∈ S : aRb}

S−
F = {b ∈ A | ∃a ∈ S : bRa}

to denote the set of attacked arguments by S (S+
F ) and the set

of arguments attacking S (S−
F ). For singleton sets {a} ⊆ A

we write a+F resp. a−F instead of {a}+F resp. {a}−F . The range
S⊕
F of a set S ⊆ A is defined as S⊕

F = S ∪ S+
F .

Semantics are given to an AF F = (A,R) via extensions,
i. e., sets of arguments that form a plausible outcome of the
argumentation represented by F . In this paper, we focus on
the stable semantics [Dung, 1995].

2https://mthimm.de/misc/ijcai24 opt mt.pdf
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Figure 1: The AAF F1 from Example 1.

Definition 2. Let F = (A,R) be an AF and let S ⊆ A be a
set of arguments. We say that

• S is conflict-free set iff S ∩ S+
F = ∅ and

• S is a stable extension iff S is conflict-free and S⊕
F = A.

Let cf(F ) denote the set of all conflict-free sets of S and let
st(F ) denote the set of all stable extensions of F . Note that
stable extensions do not necessarily exist for a given AAF.

Example 1. Consider the AAF F1 in Figure 1. We have
st(F1) = {{a, c}, {a, f}, {d, f}}.

We consider the following classical reasoning problems for
AAFs [Dvořák and Dunne, 2018] (let σ be a semantics such
as st):

VERσ: Input AF F = (A,R), S ⊆ A
Output YES iff S ∈ σ(F )

CREDσ: Input AF F = (A,R), a ∈ A
Output YES iff a ∈

⋃
σ(F )

SKEPσ: Input AF F = (A,R), a ∈ A
Output YES iff a ∈

⋂
σ(F )

EXISTSσ: Input AF F = (A,R)
Output YES iff σ(F ) ̸= ∅

EXISTS¬∅
σ : Input AF F = (A,R)

Output YES iff there is S ∈ σ(F ) with S ̸= ∅
The computational complexity of the above problems for sta-
ble semantics are as follows, cf. [Dimopoulos and Torres,
1996; Dvořák and Dunne, 2018].

Theorem 1. VERst is in P, CREDst is NP-complete, SKEPst is
coNP-complete, EXISTSst is NP-complete, EXISTS¬∅

st is NP-
complete.

3 Soft notions of stable extensions
In this section, we will investigate soft notions3 of stable ex-
tensions that allow us to assess the acceptability of arguments
in a more relaxed manner as with strict stable semantics. This
allows us to judge arguments as “closer” being acceptable
wrt. stable semantics than others.

A stable extension S is characterised by two properties: it
has full range (S⊕

F = A) and it is conflict-free (S ∩ S+
F = ∅).

Our first approach (Section 3.1) weakens the first property
and our second approach (Section 3.2) weakens the second.

3We use the term “soft” instead of the probably more appropri-
ate “weak” to avoid confusion with the non-related notion of weak
stable semantics from [Baumann et al., 2022].
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3.1 Softening the requirement of full range
We now consider a semantical notion that requires a set to be
conflict-free (this is a strict requirement) and that at least a
minimum number of arguments are contained in its range.
Definition 3. Let F = (A,R) be an AF, k ∈ N, and let
S ⊆ A. We say that S is a k-stable extension iff S is conflict-
free and |S⊕

F | ≥ k. Let stk(F ) denote the set of k-stable
extensions of F .

In other words, a conflict-free set S is a k-stable extension
if the number of arguments in S and the number of arguments
attacked by S is at least k.

Some simple observations are as follows.
Proposition 1. Let F = (A,R) be an AF, k ∈ N, S ⊆ A,
and a ∈ A.

1. S is a |A|-stable extension iff S is a stable extension.
2. If S is a k-stable extension then S is a k′-stable exten-

sion for all k′ < k.
3. S ∈ cf(F ) iff S is a 0-stable extension.
4. (a, a) /∈ R iff {a} is a 1-stable extension.
5. ∅ is a 0-stable extension.
Due to items 1–3 from above we obtain

st(F ) = st|A|(F ) ⊆ st|A|−1(F ) ⊆ . . . ⊆ st0(F ) = cf(F ),

so k-stable extensions cover the complete spectrum between
stable extensions and conflict-free sets of any AF F , for k =
0, . . . , |A|.
Example 2. We consider again the AAF F1 in Fig-
ure 1. Since st(F1) = st|A1|(F1) we have st6(F1) =
{{a, c}, {a, f}, {d, f}}. By allowing extensions to contain
less arguments in the range we obtain

st5(F1) = st6(F1) ∪ {{d}}
st4(F1) = st5(F1) ∪ {{a, e}, {b, f}}
st3(F1) = st4(F1) ∪ {{a}, {b, e}, {c}, {f}}
st2(F1) = st3(F1) ∪ {{b}}
st1(F1) = st2(F1) ∪ {{e}}
st0(F1) = st1(F1) ∪ {∅}

Reasoning with k-stable semantics is as hard as reasoning
with stable semantics when considering k as an additional
input parameter.
Theorem 2. Let k ∈ N be an additional input parame-
ter to the following problems. VERstk is in P, CREDstk is
NP-complete, SKEPstk is coNP-complete, EXISTSstk is NP-
complete, EXISTS¬∅

stk is NP-complete.

3.2 Softening the requirement of conflict-freeness
Our second variant for a softening of stable extensions re-
quires that a set has full range (that is a strict requirement)
and that it “satisfies” a maximal number of attacks, where a
set of arguments satisfies an attack if it does not contain both
the attacker and the attacked argument of that attack. More
formally, for F = (A,R) and a set S ⊆ A we denote by

S⊛
F = {(a, b) ∈ R | a /∈ S or b /∈ S}

the set of satisfied attacks of F by S. Any attack (a, b) ∈
R \ S⊛

F is also called violated attack of F by S. Note that a
set S ⊆ A is conflict-free if and only if S⊛

F = R.
Definition 4. Let F = (A,R) be an AF, k ∈ N, and let S ⊆
A. We say that S is a k-stable* extension iff S⊕

F = A and
|S⊛

F | ≥ k. Let st∗k(F ) denote the set of k-stable* extensions
of F .

In other words, a set S with full range is a k-stable* exten-
sion if the number of satisfied attacks of S is at least k.

We make some simple observations about k-stable* exten-
sions.
Proposition 2. Let F = (A,R) be an AF, k ∈ N, S ⊆ A,
and a ∈ A.

1. S is a |R|-stable* extension iff S is a stable extension.
2. If S is a k-stable* extension then S is a k′-stable* ex-

tension for all k′ < k.
3. A is a 0-stable* extension.
4. If a ∈ A is not attacked in F , then a ∈ S for every

k-stable* extension S.
Example 3. We consider again the AAF F1 in Fig-
ure 1. Since st(F1) = st∗|R2|(F1) we have st∗11(F1) =

{{a, c}, {a, f}, {d, f}}. Due to the large number of exten-
sions, we only give a complete list for k = 10, 9, 8:

st∗10(F1) = st∗11(F1) ∪ {{a, b, f}, {a, c, e}, {a, e, f},
{b, d, f}, {c, d}}

st∗9(F1) = st∗10(F1) ∪ {{a, b, e, f}, {a, b, c}, {a, c, f},
{a, d, f}, {d, e, f}}

st∗8(F1) = st∗9(F1) ∪ {{b, d, e, f}, {a, b, c, e}}, {a, c, d},
{b, c, d}, {c, d, e}, {c, d, f}}

Complexity-wise, k-stable* semantics behaves as k-stable
and stable semantics.
Theorem 3. Let k ∈ N be an additional input parame-
ter to the following problems. VERst∗k is in P, CREDst∗k is
NP-complete, SKEPst∗k is coNP-complete, EXISTSst∗k is NP-
complete, EXISTS¬∅

st∗k
is NP-complete.

4 Complexity of optimisation
The notions of k-stable and k-stable* extensions “approach”
the notion of stable extensions: the larger the value k the
“closer” these extensions are to being stable extensions.
Given an AAF F = (A,R) and an argument a ∈ A, we are
interested in finding the maximum value k† such that a is con-
tained in a k†-stable/k†-stable* extension. Formally, the main
reasoning problems we are interested in are the following op-
timisation problems4:
MAXSTABLE
Input AF F = (A,R), a ∈ A
Output mst(F, a) := maxk{k | a ∈

⋃
stk(F )}

MAXSTABLE*
Input AF F = (A,R), a ∈ A
Output mst∗(F, a) := maxk{k | a ∈

⋃
st∗k(F )}

4We define max ∅ = −∞

3



Note for MAXSTABLE, the case that no k exists with a ∈⋃
stk(F ) can only happen when a attacks itself. For

MAXSTABLE*, the output is always a finite number as a ∈
A ∈ st∗|R|(F ) (see item 3 of Proposition 2).

The two problems above are optimisation variants of cred-
ulous reasoning wrt. stable semantics: we are seeking the
maximum number k† such that a given argument a can be
credulously inferred wrt. k†-stable/k†-stable* semantics. An
analysis for the optimisation variants of skeptical reasoning
(where we seek the maximum k† such that a given argument
a is contained in all k†-stable/k†-stable* extensions) is left
for future work.

Observe furthermore that solving MAXSTABLE is not
equivalent to reasoning with stage semantics [Verheij, 1996].
For an AAF F = (A,R) recall that a set S ⊆ A is a stage ex-
tension if S is conflict-free and S⊕

F is maximal wrt. set inclu-
sion among all conflict-free sets. In particular, stage seman-
tics is defined in terms of maximality wrt. set inclusion while
MAXSTABLE seeks sets where the range is maximal wrt. car-
dinality. Moreover, MAXSTABLE is defined wrt. to a given
argument and every argument has a defined value, while an
argument is credulously inferred wrt. stage semantics only if
there is a stage extension containing that argument. However,
a simple relationship between these two notions is captured
in the following proposition.
Proposition 3. Let F = (A,R) be an AAF and a ∈ A. If
there is a stage extension S with a ∈ S then mst(F, a) ≥
|S⊕

F |.
Another soft notion of a stable extension is that of a semi-

stable extension [Caminada, 2006], which is an admissible5

set that has maximal range (wrt. set inclusion). Since admis-
sibility is a stronger notion than conflict-freeness, the bound
given in Proposition 3 also applies when using semi-stable ex-
tensions instead of stage extensions. As k-stable extensions
are not necessarily admissible, no more general relationships
can be stated, however.
Example 4. We continue Example 2 and consider again the
AAF F1 from Figure 1. Here we get

mst(F1, a) = mst(F1, c) = mst(F1, d)

= mst(F1, f) = 6

mst(F1, b) = mst(F1, e) = 4

and

mst∗(F1, a) = mst∗(F1, c) = mst∗(F1, d)

= mst∗(F1, f) = 11

mst∗(F1, b) = mst∗(F1, e) = 10

Since credulous reasoning with k-stable/k-stable* seman-
tics is NP-complete (see Theorems 2 and 3), the problems
MAXSTABLE and MAXSTABLE* are naturally in the com-
plexity class NPO, i. e., the class containing optimisation
problems where the corresponding decision problems are in
NP. We will now investigate the computational complexity of

5A set S is admissible iff S is conflict-free and for every a ∈ A
and b ∈ S with aRb there is c ∈ S with cRa.

MAXSTABLE and MAXSTABLE* from two perspectives in
more detail. First, we consider the complexity of (exact) opti-
misation and show that both problems are FPNP[log]-complete.
In Section 5 we will consider the complexity of approxi-
mation and show that MAXSTABLE is Poly-APX-complete
(under PTAS-reductions) while MAXSTABLE* is Log-APX-
complete (under PTAS-reductions).

The class FPNP[log] is the class of functional problems that
have a polynomial-time algorithm that may make logarithmi-
cally many calls to an NP-oracle. Membership of our prob-
lems MAXSTABLE and MAXSTABLE* for this class can be
shown easily through an algorithm that does a binary search
for the maximal value k† and iteratively solving the prob-
lems CREDstk and CREDst∗k , respectively. Hardness is shown
through a reduction from the FPNP[log]-complete problem
MAXSATSIZE, i. e., the problem of determining the maxi-
mal number of clauses of a SAT instance that can be jointly
satisfied.
Theorem 4. MAXSTABLE is FPNP[log]-complete.
Theorem 5. MAXSTABLE* is FPNP[log]-complete.

5 Complexity of approximation
We will now consider the problem of approximating the so-
lutions to MAXSTABLE and MAXSTABLE*, i. e., we are in-
terested in algorithms that maximise the approximation ratio
AR in the following sense:

AR =
APP
OPT

where OPT is the solution to either MAXSTABLE or
MAXSTABLE* (given some F = (A,R) and a ∈ A) and
APP ≤ OPT is the solution of the considered approximation
algorithm. An approximation ratio of 1 (which is the max-
imal value for AR) therefore indicates an optimal algorithm
and lower values of AR indicate worse approximation quality.
Note that OPT = 0 is a possible solution for MAXSTABLE*
(e. g., it is the solution for b in F = ({a, b}, {(a, b)})). Then
we also necessarily have APP = 0 (due to 0 ≤ APP ≤ OPT)
and we just define AR = 1 in that case.

We now investigate the approximation complexity of
MAXSTABLE. For that, observe that the notion of a k-stable
extension is related to another well-known notion from graph
theory, namely independent sets.
Definition 5. Let G = (V,E) be an undirected graph. A set
S ⊆ V is an independent set iff (S × S) ∩ E = ∅.

In other words, an independent set S of an undirected graph
G = (V,E) is a set of vertices of G, such that no two
vertices of S are adjacent in G. The optimisation problem
MAXINDEPSET is defined as:
MAXINDEPSET
Input G = (V,E)
Output maxS⊆V {|S| | S is an independent set in G}
In other words, the problem MAXINDEPSET6 for a given

6This problem is also called the maximum independent set prob-
lem and should not be confused with the maximal independent set
problem that seeks an independent set that is maximal wrt. set inclu-
sion (the latter problem can also be solved in polynomial time).
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undirected graph G = (V,E) asks for finding the largest
number k such that there is an independent set S ⊆ V
with |S| = k. This is very much related to the problem
MAXSTABLE. However, for MAXSTABLE we are seeking
sets of vertices of a directed graph (instead of an undirected
graph), where the cardinality of the range (instead of the
cardinality of the set) is maximal. These differences actu-
ally pose a significant challenge in relating approximative ap-
proaches for MAXINDEPSET and MAXSTABLE in the proof
of Theorem 6 below.

The problem MAXINDEPSET is Poly-APX-complete [Baz-
gan et al., 2005], and therefore very hard to approximate
(given P ̸= NP). The complexity class Poly-APX consists
of optimisation problems, which can be approximated with
polynomial-time algorithms that admit an approximation ra-
tio that is bounded by a polynomial dependent on the size
of the input. We use this result to also show Poly-APX-
completeness of MAXSTABLE. So in our case, the best gen-
eral lower bound of the approximation ratio we can guarantee
is AR ≥ 1/f(|A|) where f is a polynomial and A is the set
of arguments of the input F = (A,R).

We show Poly-APX-completeness under PTAS-reductions
[Crescenzi, 1997], which have also been used to show
Poly-APX-completeness of MAXINDEPSET in [Bazgan et
al., 2005]. Informally speaking, a PTAS-reduction is a
polynomial-time reduction from a problem A to a problem B
that preserves, to some degree, the approximation ratio of an
algorithm for problem B to problem A. The formal definition
can be found in the proof of the theorem below (see the sup-
plementary material).

Theorem 6. MAXSTABLE is Poly-APX-complete under
PTAS-reductions.

We now turn to the approximation complexity of
MAXSTABLE*. The k-stable* extension also has a well-
known counterpart in graph theory: the dominating set.

Definition 6. Let G = (V,E) be an undirected graph. A set
S ⊆ V is a dominating set iff every v ∈ V is either in S or
adjacent to S.

So a dominating set S of an undirected graph G = (V,E)
is a set of vertices of G, such that all vertices of G are either in
S or adjacent to it. The optimisation problem MINDOMSET
is defined as:

MINDOMSET
Input G = (V,E)
Output minS⊆V {|S| | S is a dominant set in G}
In other words, the problem MINDOMSET for a given undi-
rected graph G = (V,E) asks for finding the smallest number
k such that there is a dominating set S ⊆ V with |S| = k.
The problem MINDOMSET is Log-APX-complete [Lund and
Yannakakis, 1994]. The complexity class Log-APX con-
sists of optimisation problems, which can be approximated
with polynomial-time algorithms that admit an approxima-
tion ratio that is bounded by the logarithm of a polynomial
dependent on the size of the input, i. e., we have AR ≥
1/ log(f(|I|)) where f is a polynomial and |I| is the size of
the instance.

Again, we can observe that the problem MINDOMSET is
related to our problem MAXSTABLE*. Observe first that al-
though MAXSTABLE* is defined as a maximisation problem,
we can consider an equivalent formalisation where we min-
imise the number of violated attacks (instead of maximising
the number of satisfied attacks).7 Comparing MINDOMSET
with MAXSTABLE*, we see that in the latter we are seek-
ing sets of vertices of a directed graph (instead of an undi-
rected graph), where the cardinality of the set of edges be-
tween members in the set is minimal (instead of the cardinal-
ity of the set itself). While these differences also pose some
interesting challenges in the proof, we are still able to reduce
the problem MINDOMSET to MAXSTABLE* and therefore
obtain Log-APX-hardness of MAXSTABLE*. Unfortunately,
proving the membership of MAXSTABLE* to Log-APX is
quite elusive, so we only give the lower bound.
Theorem 7. MAXSTABLE* is Log-APX-hard under PTAS-
reductions.

6 Approximation algorithms
Despite the quite negative theoretical results from the previ-
ous two sections, we will now discuss four simple approxi-
mation algorithms (based on greedy search) for the problems
MAXSTABLE and MAXSTABLE*, for which we will investi-
gate the empirical average approximation ratio in Section 7.

6.1 Growing conflict-free sets (GCF)
Our first approximation algorithm addresses the problem
MAXSTABLE, i. e., given F = (A,R) and a ∈ A we are
looking for a conflict-free set S such that a ∈ S and |S⊕

F | is
maximised. We do this by greedily adding arguments to a set,
as long as this set remains conflict-free. Algorithm 1 depicts
our GCF algorithm (growing conflict-freeness). In lines 1–2

Algorithm 1 GCF algorithm for MAXSTABLE.

Input: F = (A,R) and a ∈ A
Output: k ∈ N such that there is a conflict-free set S

with a ∈ S and k = |S⊕
F |.

1: if (a, a) ∈ R then
2: return −∞
3: S ← {a}
4: while S ∪ S+

F ∪ S−
F ̸= A do

5: Let b ∈ A\(S∪S+
F ∪S

−
F ) s.t. |(S∪{b})⊕F | is maximal

6: S ← S ∪ {b}
7: return |S⊕

F |

we first check for the special case of a self-attacking argu-
ment and return −∞ as the (optimal) solution in that case.
We add our query argument a to a set S in line 3 and re-
peat lines 5–6 as long as there are arguments, which can be
added to S without violating conflict-freeness (so as long as
S ∪ S+

F ∪ S−
F ̸= A). From those arguments, we pick one in

7Note, however, that approximation ratios differ between the rep-
resentations as minimisation and maximisation problems. We only
consider the approximation ratio for the representation as maximi-
sation problem.
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line 5 that maximises the number of arguments in the range
and add it to S (line 6).
Proposition 4. Let k be the output of the GCF algorithm on
input F = (A,R) and a ∈ A. Let furthermore k† be the
optimal solution to MAXSTABLE on F and a. Then

1. there is a conflict-free set S with a ∈ S and k = |S⊕
F |,

2. k ≥ k†/|A|, and
3. k has been determined by GCF in polynomial time.

6.2 Shrinking conflict-free sets (SCF)
Our second approximation algorithm for MAXSTABLE starts
from the set of all arguments and iteratively removes ar-
guments until we end up with a conflict-free set. Algo-
rithm 2 depicts this SCF algorithm (shrinking conflict-free
sets). Lines 1–2 again cover the special case of a self-
attacking query argument. We initialise the set S in line 3
with the whole set of arguments from A. In line 5 we select
an argument b (which has to be different from the query argu-
ment) that, upon removal, will produce a maximal number of
satisfied attacks. We terminate once we reach a conflict-free
set (line 4).

Algorithm 2 SCF algorithm for MAXSTABLE.

Input: F = (A,R) and a ∈ A
Output: k ∈ N such that there is a conflict-free set S

with a ∈ S and k = |S⊕
F |.

1: if (a, a) ∈ R then
2: return −∞
3: S ← A
4: while S ∩ S+

F ̸= ∅ do
5: Let b ∈ S \ {a} s.t. |(S \ {b})⊛F | is maximal
6: S ← S \ {b}
7: return |S⊕

F |

Proposition 5. Let k be the output of the SCF algorithm on
input F = (A,R) and a ∈ A. Let furthermore k† be the
optimal solution to MAXSTABLE on F and a. Then

1. there is a conflict-free set S with a ∈ S and k = |S⊕
F |,

2. k ≥ k†/|A|, and
3. k has been determined by SCF in polynomial time.

6.3 Growing full-range sets (GFR)
We now consider the problem MAXSTABLE*, i. e., given
F = (A,R) and a ∈ A we are looking for a set S with a ∈ S
and S⊕

F = A such that S⊛
F is maximised. We provide a vari-

ant of the GCF algorithm (Section 6.1) that starts from the
set S containing just a and iteratively adds arguments until
S⊕
F = A. Algorithm 3 depicts this GFR algorithm (growing

full-range sets). In line 1, the set S is initialised with a and
line 3 adds the argument that will maximise the range. The
algorithm terminates, when full range is achieved (line 2) and
returns the number of satisfied attacks S⊛

F .
Proposition 6. Let k be the output of the GFR algorithm on
input F = (A,R) and a ∈ A. Let furthermore k† be the
optimal solution to MAXSTABLE* on F and a. Then

Algorithm 3 GFR algorithm for MAXSTABLE*.

Input: F = (A,R) and a ∈ A
Output: k ∈ N such that there is a set S with

a ∈ S, S⊕
F = A and k = |S⊛

F |.
1: S ← {a}
2: while S⊕

F ̸= A do
3: Let b ∈ A \ S s.t. |(S ∪ {b})⊕F | is maximal
4: S ← S ∪ {b}
5: return |S⊛

F |

1. there is a set S with a ∈ S, S⊕
F = A, and k = |S⊛

F |,

2. k ≥ k†/|R|, and

3. k has been determined by GFR in polynomial time.

Item 2 of the above proposition only gives a polynomial
bound on the approximation ratio. As mentioned right be-
fore Theorem 7, we suspect that MAXSTABLE* is Log-APX-
complete and, moreover, that the GFR algorithm is a witness
for Log-APX-membership. So the bound in item 2 can likely
be improved to k†/O(log |R|), but we were not yet able to
formally prove this.

6.4 Shrinking full-range sets (SFR)
We now provide a variant of the SCF algorithm (Section 6.2)
for the problem MAXSTABLE* that starts from the set S con-
taining all arguments and iteratively removes arguments until
S⊕
F = A can no longer be sustained. Algorithm 4 depicts this

SFR algorithm (shrinking full-range sets). In line 1, the set S
is initialised with A. As long as there is an argument b (that is
not the query argument a), such that removing b from S will
retain full range (line 3), such a b is removed from S that also
restores a maximal number of satisfied attacks (line 3).

Algorithm 4 SFR algorithm for MAXSTABLE*.

Input: F = (A,R) and a ∈ A
Output: k ∈ N such that there is a set S with

a ∈ S, S⊕
F = A and k = |S⊛

F |.
1: S ← A
2: while there is b ∈ S \ {a} with (S \ {b})⊕F = A do
3: Let b be as above s.t. |(S \ {b})⊛F | is maximal
4: S ← S \ {b}
5: return |S⊛

F |

Proposition 7. Let k be the output of the SFR algorithm on
input F = (A,R) and a ∈ A. Let furthermore k† be the
optimal solution to MAXSTABLE* on F and a. Then

1. there is a set S with a ∈ S, S⊕
F = A, and k = |S⊛

F |,

2. k ≥ k†/|R|, and

3. k has been determined by SFR in polynomial time.

Also for the SFR algorithm, we believe that the bound in
item 2 above can be improved to k†/O(log |R|).
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7 Experiments
We now report on a small feasibility study that analyses the
average approximation ratio of the algorithms from above on
existing data sets.

7.1 Experimental setup
We implemented8 the algorithms from Sections 6.1–6.4 in
Java, building on existing implementations for AAFs in
TweetyProject9. We also implemented algorithms OPT
and OPT* that optimally solve the problems MAXSTABLE
and MAXSTABLE*, respectively. The algorithms for OPT
and OPT* rely on straightforward MaxSAT encodings of
MAXSTABLE and MAXSTABLE* and were implemented in
Java as well, using the MaxSAT solver open-wbo 2.110 as
backend solver. Since the main aim of the feasibility study
here is to analyse the approximation quality of our heuristic
approaches, we did not optimise the implementations for run-
time performance (which also explains why we did not use a
more performant programming language) and will not go into
further details on the exact design of these algorithms.

We used the ICCMA17 and the ICCMA19 datasets as
benchmarks.11 Note that the benchmarks of ICCMA17 are
clustered in groups and group B contains the benchmarks
for problems related to stable semantics, so we only used
that group, indicated by ICCMA17-B in the following. We
also did some preliminary experiments with the datasets from
ICCMA21 and ICCMA23, but since the optimal approaches
timed out quite often on these datasets, an analysis of the ap-
proximation ratio was not feasible.

For each AAF in the above datasets, we selected 10 argu-
ments12 at random and asked all algorithms to determine the
solution of MAXSTABLE, resp. MAXSTABLE* with respect
to these query arguments. In the following, a pair of AAF and
query argument will be referred to as instance. The experi-
ments were conducted on a server with Intel Xeon E5-2643
v3 3.40-GHz CPUs (each algorithm is single-threaded) with
192GB RAM and we set a timeout of 10 minutes per instance.

7.2 Results
Table 1 summarises the results of our feasibility study on
the ICCMA17-B (containing 3492 instances) and ICCMA19
(containing 3224 instances) dataset. The column “#TO” lists
the number of timeouts of the corresponding approach, the
column “RT” gives the total runtime (in seconds) on all in-
stances that did not result in a timeout, and the column “AR”
gives the average approximation ratio. The numbers in paren-
theses in the columns “RT” and “AR” are the number of in-
stances, where these metrics are based upon. In particular,
note that the average approximation ratio of a heuristic ap-
proach is only over those instances were both the heuristic
approach and the optimal approach did not time out.

8http://tweetyproject.org/r/?r=ijcai24 opt mt
9http://tweetyproject.org

10https://github.com/sat-group/open-wbo
11http://argumentationcompetition.org
12Both datasets contained AAFs with less than 10 arguments, for

those we selected all arguments.

Approach #TO RT AR
ICCMA17-B (3492)
OPT 719 84801.7 (2773) 1.000 (2773)
GCF 47 4960.8 (3445) 0.964 (2736)
SCF 70 26119.4 (3422) 0.906 (2720)
OPT* 1372 75558.0 (2120) 1.000 (2120)
GFR 55 5620.8 (3437) 0.925 (2081)
SFR 70 72483.9 (3422) 0.984 (2075)
ICCMA19 (3224)
OPT 4 8271.7 (3220) 1.000 (3220)
GCF 0 54.9 (3224) 0.980 (3220)
SCF 0 3734.4 (3224) 0.889 (3220)
OPT* 9 19808.3 (3215) 1.000 (3215)
GFR 0 229.8 (3224) 0.961 (3215)
SFR 0 2390.4 (3224) 0.989 (3215)

Table 1: Results on the ICCMA17-B and ICCMA19 datasets.

We can notice that the average approximation ratios of our
heuristic approaches are surprisingly large, given the quite
negative theoretical observations in the previous section. In
fact, all heuristic approaches come close to the optimal so-
lution with an average approximation ratio of 0.889 to 0.989.
For the MAXSTABLE problem, we see that the GCF approach
outperforms the SCF approach both in terms of approxima-
tion ratio and runtime, the latter showing a quite significant
difference. For the MAXSTABLE* problem, the situation is a
bit different. Here, the SFR approach outperforms the GFR
approach in terms of approximation ratio, but not in terms of
runtime. It is also quite clear, that all heuristic approaches
outperform their corresponding optimal approaches in terms
of timeouts and runtimes. However, since optimising run-
time performance is not the goal of our implementations and
this feasibility study, we will not go into a deeper analysis of
the runtime behaviour. However, the results in Table 1 show,
despite the negative worst-case behaviour of approximation
algorithms highlighted in Theorems 6 and 7, that heuristic ap-
proaches for MAXSTABLE and MAXSTABLE* give promis-
ing results on average for existing datasets.

8 Summary and future work
We introduced two soft notions of stable semantics, analysed
their general properties, and investigated the computational
complexity of optimisation and approximation. We also pre-
sented some polynomial-time approximation algorithms for
the corresponding optimisation problems and analysed their
empirical approximation quality. While we showed that the
theoretical approximatibility is rather bad, our algorithms
performed rather well on existing datasets.

For future work, we will investigate soft notions and the
corresponding optimisation problems for other classical se-
mantical notions such as admissibility and the resulting clas-
sical complete and preferred semantics. We will also consider
skeptical variants of the optimisation problems MAXSTABLE
and MAXSTABLE* and investigate their complexity. Finally,
we will apply the developed soft notions to the problems of
ranking [Skiba et al., 2021; Amgoud and Ben-Naim, 2013;
Bonzon et al., 2016] and enforcement [Baumann et al., 2021].
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