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Abstract. Abstract argumentation frameworks model arguments and
their relationships as directed graphs, often with the goal of identify-
ing sets of arguments capable of defending themselves against external
attacks. The determination of such admissible sets, depending on spe-
cific semantics, is known to be an NP-hard problem. Recent research has
demonstrated the efficacy of machine learning methods in approximating
solutions compared to exact methods. In this study, we leverage machine
learning to enhance the performance of an exact solver for credulous rea-
soning under admissibility in abstract argumentation. More precisely, we
first apply a random forest to predict acceptability, and subsequently use
those predictions to form a heuristic that guides a search-based solver.
Additionally, we propose a strategy for handling varying prediction quali-
ties. Our approach significantly reduces both the number of backtracking
steps and the overall runtime, compared to standard existing heuristics
for search-based solvers, while still providing a correct solution.

Keywords: Abstract argumentation · Heuristics · Random forest.

1 Introduction

Argumentation is central for human communication and interaction, hence there
are various strategies of implementing this concept in approaches to artificial
intelligence. In the field of abstract argumentation [8], the underlying idea is to
focus on the interplay between arguments and counterarguments rather than on
the content of the arguments themselves. The core formalism in this field is the
abstract argumentation framework, which can be understood as a directed graph
in which the nodes represent the given arguments, and the edges represent an
attack relation between them.

Figure 1 shows an example of such a framework. Semantics are commonly
expressed through so-called extensions, which are sets of arguments that jointly
fulfill certain conditions. A fundamental semantics in the field of abstract argu-
mentation is the concept of admissibility. In order to be an admissible extension,
arguments in the set must not attack each other (i. e., the set must be conflict-
free) and they have to defend each other from all outside attacks.
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Typical problems in abstract argumentation include the problem of deciding
whether an argument is included in at least one extension (or all extensions) wrt.
a specific semantics, or the problem of determining an extension or enumerating
all of them wrt. a specific semantics.

The literature already provides different families of (exact) approaches to
solve the above-mentioned reasoning problems in abstract argumentation. One
such family consists of reduction-based approaches—see, e. g., [21,17,24,1,9]—
which encode a given problem in a different formalism—e. g., as a Boolean sat-
isfiability problem—and then use an existing solver for that formalism. Another
family of approaches consists of backtracking-based methods that make use of
heuristics to guide the search procedure—see, e. g., [22,12,23].

Since most of the reasoning problems in abstract argumentation are compu-
tationally hard [10], this can result in exceedingly long runtimes when using an
exact algorithm. To counteract this issue, machine learning-based approaches
have been proposed in the literature [15,19,6,7]. However, although these ap-
proaches proved to be significantly faster than their exact counterparts, they are
not guaranteed to yield correct results (for a deeper analysis, see also [16]). Thus,
the main advantage of an exact method (such as a reduction- or backtracking-
based approach) is that it always provides correct results, while the main ad-
vantage of a (purely heuristic) machine learning-based approach is its runtime
performance. An approach for combining these advantages is the use of machine
learning techniques to predict the “best” exact solver from a portfolio [25,14]. In
the work at hand, we aim to harness the advantages of machine learning meth-
ods in a different manner. More precisely, we use predictions made by a machine
learning model in order to inform a heuristic that guides a backtracking-based
approach which ultimately yields a correct result. As an example for the overall
approach we consider the task of deciding whether a given argument is accepted
under admissibility [8], which is a core aspect in many reasoning problems. In
an experimental evaluation we compare the use of our machine learning-based
heuristic (using a random forest) to the standard heuristic of the backtracking-
based solver Heureka [12], and we demonstrate that both the number of back-
tracking steps as well as the overall runtime can be reduced when our newly
proposed heuristic is applied.

To summarize, our contributions are as follows:

– We present an approach that exploits the strengths of both machine learning
and reasoning techniques by using machine learning-based predictions to
create a heuristic which can accelerate an exact, backtracking-based solver.

– Our approach offers a flexible solution, as both the machine learning com-
ponent and the backtracking-based solver can be specified as desired.

– In an experimental analysis, we show that our approach leads to a significant
decrease in both the number of backtracking steps and overall runtime, when
compared to a standard heuristic.

The remainder of the paper is organized as follows. In Section 2 we pro-
vide some preliminaries on the topic of abstract argumentation. After giving an
overview on current solution approaches for problems in abstract argumentation
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Fig. 1. An abstract argumentation framework.

in Section 3, we propose a machine learning-guided heuristic in Section 4. An
extensive experimental analysis is presented in Section 5, Section 6 details the
limitations of our research and finally we conclude in Section 7.

2 Preliminaries

An abstract argumentation framework (AF) [8] is a tuple F = (Args, R), with
Args being a set of arguments and R ⊆ Args× Args defining an attack relation.
An argument a ∈ Args attacks another argument b ∈ Args if (a, b) ∈ R. On the
other hand, an argument a ∈ Args is defended by a set of arguments E ⊆ Args if
for all b ∈ Args with (b, a) ∈ R, there exists a c ∈ E with (c, b) ∈ R.

An extension is a set of arguments that are jointly acceptable, given a set
of conditions. Exactly which conditions need to be satisfied is determined by
a semantics. There exists a multitude of different semantics in the literature,
however, we focus on the preferred semantics introduced in the seminal paper
by Dung [8].

Definition 1. Let F = (Args, R) be an argumentation framework. A set E ⊆
Args is

– conflict-free if there are no a, b ∈ E such that (a, b) ∈ R,

– admissible if E is conflict-free and each a ∈ E is defended by E within F ,

– complete if every argument a ∈ Args defended by E is also included in E,

– preferred if E is a ⊆-maximal complete extension, and

– grounded if E is a ⊆-minimal complete extension.

Note that the grounded extension is uniquely determined [8]. Typical decision
problems in the area of abstract argumentation include the problem of decid-
ing whether a given argument is included in at least one extension (credulous
acceptability) or all extensions (skeptical acceptability) wrt. a given semantics.
In the following, we denote the problem of deciding credulous acceptability wrt.
preferred semantics as DC. Note that this problem is equivalent to the prob-
lems of deciding credulous acceptability under admissible, and under complete
semantics.



4 S. Hoffmann et al.

Algorithm 1: Backtracking-based algorithm SEARCH for checking
credulous acceptance wrt. admissibility

Data: F = (Args, R), Sin, Sout ⊆ Args
Result: True if there is admissible S′ with Sin ⊆ S′.

1 if Sin is not conflict-free then
2 return False

3 if Sin is admissible then
4 return True

5 Pick a ∈ Args \ (Sin ∪ Sout)
6 return SEARCH(F, Sin ∪ {a}, Sout) OR SEARCH(F, Sin, Sout ∪ {a})

Example 1. Consider the AF illustrated in Figure 1. The conflict-free sets of this
AF are

{∅, {a0}, {a1}, {a2}, {a3}, {a4},
{a0, a2}, {a0, a4}, {a2, a4}, {a3, a4},
{a0, a2, a4}}.

Out of these sets, only ∅, {a4}, {a0, a4}, and {a0, a2, a4} defend themselves, and
are thus admissible. Further, the only complete sets are ∅ and {a0, a2, a4}, which
makes the grounded extension (i.e., the ⊆-minimal complete extension) ∅, and
the set of preferred extensions (i.e., the ⊆-maximal complete extensions) consists
only of {a0, a2, a4}. We can also see that the set of arguments contained in at
least one admissible set (i.e., the set of credulously acceptable arguments wrt.
admissibility) is {a0, a2, a4}, which is equal to the set of credulously accepted
arguments under complete or preferred semantics.

3 Solution Approaches in Abstract Argumentation

The methods employed to address decision problems in abstract argumenta-
tion can be broadly categorized into reduction-based or direct approaches [5].
Reduction-based solvers operate by translating the reasoning problem into other
formalisms, such as answer-set programming [9,11], constraint-satisfaction prob-
lems [4,2] or Boolean satisfiability [21,26], leveraging existing solvers in those
domains. The advantage of the reduction-based approach lies in the high effi-
ciency of these existing solvers. On the other hand, direct approaches involve
the implementation of a dedicated algorithm tailored to the structure of AFs,
often utilizing backtracking. Direct solvers retain the structural information of
the AF, allowing them to exploit specific shortcuts relevant to certain semantics
[5].

Algorithm 1 describes a simple backtracking strategy to assess argument jus-
tification. Given an AF F and two argument sets Sin and Sout, the algorithm
recursively explores potential admissible sets by considering the inclusion or ex-
clusion of individual arguments. It terminates and returns False if Sin is not
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conflict-free, ensuring the absence of internal attacks. If Sin is already admis-
sible, the algorithm returns True. Otherwise, it selects an argument a from
the remaining set of arguments and recursively follows two branches: one in-
cluding a in Sin and maintaining Sout, and another excluding a from Sin and
incorporating a into Sout. If the search in the first branch succeeds the second
branch does not have to be explored. If the search in the first branch fails, we
say that the algorithm backtracks and it is required to continue with the second
branch. The algorithm returns True if either branch results in an admissible
set. The algorithm can determine if an argument a is contained in at least one
admissible/preferred/complete extension by calling it with SEARCH(F, {a}, ∅).

The order in which arguments are processed—i. e. how argument a is deter-
mined in line 5 of Algorithm 1—plays a crucial role in the algorithm’s perfor-
mance, and different heuristics can be employed for this purpose. The algorithm
we use in our study specifies the order in a deterministic way. The selected
heuristic calculates a confidence value for each argument. Subsequently, these
values are arranged in descending order to establish the total ordering.

Example 2. Consider again the AF in Figure 1, which depicts an AF with the
preferred extension {a0, a2, a4}, and the task to decide DC wrt. a2. Assuming
the order determined by a certain heuristic is (a1, a3, a4, a0, a2)

1, the binary tree
visualizing the recursive calls needed to solve this task using Algorithm 1 has a
depth of 4. In contrast, building the order based on a perfect prediction of each
argument’s acceptability yields a depth of 2, thereby enhancing the algorithm’s
efficiency.

Note that Algorithm 1 only showcases the general principle of search-based al-
gorithms. Existing search-based solvers [22,12,23] are more involved and rely on
similar techniques as DPLL- and CDCL-solvers from satisfiability solving [3].

4 Machine Learning-Guided Heuristics

The goal of this paper is to improve the performance of a direct solver by reducing
the number of backtracking steps necessary to decide DC wrt. a given argument.
In order to do so, we employ a machine learning classifier and use the obtained
predictions to guide a direct solver. For our research, we decided to predict the
overall acceptance status of an argument and use this prediction, along with a
confidence measure, to build our heuristic. This heuristic determines the order
in which the search algorithm processes the arguments. One might question
why we did not employ the classifier to directly predict the optimal order for
each argument, thereby eliminating the need for a priority heuristic altogether.
However, it is crucial to acknowledge that for each argument, there exist multiple
ideal orderings that would effectively guide the solver.

Returning to Example 2, we determined a0, a2, a4 to be the preferred ex-
tension of this AF. However, when deciding DC with respect to a2, it does not

1 This is the order determined by the standard heuristic used in Heureka [12].
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matter whether we first pass a0 or a4 to the algorithm. Another possible approach
would be to aim to directly predict admissible sets. The author in [18] describes
a similar approach by training a graph neural network to predict which argu-
ments are jointly admissible and then use this information to guide a SAT-based
solver. While this approach yielded promising results and provides opportuni-
ties for further study, it also requires extensive neural network training, whereas
our goal was to investigate whether a lightweight solution could already provide
substantial improvements. More information on the training process is provided
in Section 5.1.

We pass the obtained prediction outcomes as input to a direct solver and use
them to develop a heuristic that prioritizes arguments based on their predicted
acceptability. Arguments predicted with higher confidence to be accepted wrt.
DC are processed first, while those likely to be rejected are processed last.

We compare the results to those obtained using a heuristic that has demon-
strated effective performance for DC in prior research [12].

Following an analysis of some initial experiments, we refine our approach by
crafting a heuristic tailored specifically to the query argument. Subsequently, we
assess the performance on further datasets.

To determine whether an argument a is acceptable wrt. DC, we need to find
a preferred extension that contains a. In contrast, to prove that a is not accept-
able wrt. DC, we need to establish that there cannot be a preferred extension
containing a. As any conflict with the grounded extension signifies the rejection
of a, our strategy in aiming to prove that a is not acceptable wrt. DC revolves
around assuming a, as well as all arguments belonging to the grounded exten-
sion, are acceptable wrt. DC and devising a heuristic prioritizing arguments likely
not being accepted. This approach aimed to ensure conflicts happen early on in
the justification process, in order to enhance overall performance. While ini-
tial experiments showed promising outcomes in AFs with substantial grounded
extensions, the efficacy diminished in AFs with an empty grounded extension.
Even when restricting the heuristic’s application only to AFs with non-empty
grounded extensions, the results failed to significantly surpass those of the stan-
dard heuristic. This may be attributed to the fluctuation in prediction accuracy
when considering related arguments. As detailed in Section 5, although our RF-
model is able to classify most arguments correctly, when constructing a heuristic
centered on a specific argument, substantial penalties can occur for inaccuracies
in predicting related arguments. Additional research is needed to devise a robust
heuristic for rejected arguments. Consequently, we exclusively consider accepted
arguments in the subsequent sections of this paper.

5 Experimental Analysis

The following section offers an overview of the datasets we utilized, outlines our
experimental setup, and presents the results obtained from our experiments.
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5.1 Datasets and Setup

To conduct our experiments, we utilized the kwt-train and kwt-test datasets
generated using the KwtDungTheoryGenerator2 as described in [16]. Each graph
in these datasets consists of 151 arguments, and the training and test set each
contain 1000 graphs.

To assess the performance of our heuristic on larger datasets, we employed
the KwtDungTheoryGenerator to generate a more extensive dataset called kwt-
large. This new dataset comprises 10,000 graphs designated for training (kwt-
large-train) and an additional 1000 graphs reserved for testing (kwt-large-test).
The graphs within this dataset span a range of 100 to 300 arguments, with a
total of 148,483 accepted arguments within the kwt-large-test set.

In our research, the primary emphasis lies on enhancing the performance of
arguments that are credulously accepted. Accordingly, we sought to employ a
graph type that featured a substantial number of accepted arguments for our
third dataset. To achieve this, we harnessed the AFBenchGen graph generator3

to create a supplementary set of 10,000 Barabasi graphs for training (Barabasi-
train) and an additional 1,000 Barabasi graphs for testing (Barabasi-test). These
graphs encompassed argument quantities ranging from 100 to 500, resulting in
a total of 252,502 accepted arguments within the Barabasi-test set4.

Previous research has suggested that standard machine learning classifiers
are useful in predicting the acceptability status of arguments in an AF [16,13].
In [13] random forest (RF) classifiers trained using a comprehensive feature set
provided the best results. This feature set comprised 10 node- and graph-based
properties, namely the degree, closeness, Katz [20], and betweenness centrality
as well as the number of the strongly connected components (SCC) of the AF,
the size of the SCC each argument is part of, the average degree of the AF and
whether it is irreflexive, strongly connected or aperiodic.

Building on these results, we trained individual RF classifiers for each dataset.
The training and testing procedures were executed using Python, making use of
the scikit-learn5 and networkx 6 libraries. For a detailed overview of all three
datasets, please refer to Table 1. To quantify the efficacy of our classifica-
tion results, we use the standard metrics of accuracy, recall (also referred to
as true positive rate (TPR)), specificity (also referred to as true negative rate
(TNR)), and precision, as well as the Matthews Correlation Coefficient (MCC).
We define a true positive (TP) as an argument in an AF that is accepted wrt.
DC and was correctly classified as such. Accordingly, a true negative (TN) is
a non-accepted argument that is correctly classified as such, and false posi-
tives/negatives (FP/FN) are the corresponding falsely classified counterparts.

2 http://tweetyproject.org/r/?r=kwt gen
3 https://sourceforge.net/projects/afbenchgen/
4 The datasets, the enhanced Heureka code and the individual results are available
here: http://mthimm.de/misc/hkt ratio24.zip

5 https://scikit-learn.org/stable/
6 https://networkx.org/

http://tweetyproject.org/r/?r=kwt_gen
https://sourceforge.net/projects/afbenchgen/
http://mthimm.de/misc/hkt_ratio24.zip
https://scikit-learn.org/stable/
https://networkx.org/
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Table 1. Overview of the kwt, kwt-large and Barabasi datasets.

Dataset
No of
graphs

No of
nodes

YES nodes NO nodes

kwt-train 1,000 151,000 113,539 37,461

kwt-test 1,000 151,000 112,909 38,091

kwt-large-train 10,000 2,210,000 1,574,194 635,806

kwt-large-test 1,000 220,342 148,483 71,859

Barabasi-train 10,000 3,000,000 2,524,352 475,648

Barabasi-test 1,000 300,000 252,502 47,498

Table 2. Results for classifying the kwt, kwt-large and Barabasi test sets using an RF
classifier trained on a total of 10 graph features.

Dataset MCC Accuracy
Recall
(TPR)

Specificity
(TNR)

Precision

kwt-test 0.987 0.995 0.994 1 1

kwt-large-test 0.990 0.996 0.994 1 1

Barabasi-test 0.792 0.947 0.980 0.771 0.958

Accuracy is defined as TP+TN
TP+TN+FP+FN , precision as TP

TP+FP , TPR as TP
TP+FN , TNR

as TN
TN+FP , and MCC as TP·TN−FP·FN√

(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)
.

We decided on using the Heureka solver [12] due to its implementation of
a direct solution approach and its flexibility in incorporating custom heuristics
to determine the order of arguments. The objective of the heuristic is to assign
a real-number value to each argument through a mapping function. A higher
value indicates a higher priority for a particular argument, influencing its pro-
cessing order in the justification process. Specifically for DC, Heureka employs
a standard heuristic that emphasizes arguments within strongly connected com-
ponents, combining this with a path-based component.

In our experiments, Heureka is executed on each argument within our test
sets, capturing both runtime and backtracking steps for individual arguments.
The standard heuristic serves as a benchmark for comparing the outcomes of
our experiments. To control the overall runtime for each dataset, a timeout of
10 minutes per argument is implemented.

5.2 Initial Experimental Analysis

We begin our experiments by training an RF classifier for each dataset. An
overview of the classification metrics is provided in Table 2.

Our initial approach involves simply prioritizing the arguments predicted
to be acceptable wrt. DC. The order of argument processing is determined by
calculating a score for each argument based on the percentage of trees that
favor the assigned label. If an argument is predicted to not be contained in any
extension, we prioritize arguments with predictions that are close to the decision
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Table 3. Results for classifying DC arguments in the kwt Dataset using the standard
Heureka heuristic as well as a simple prediction-based ordering

MCC
Standard
Backtracks

Prediction
Backtracks

no of
AFs

>0.7 39,919 1,082,091 8

>0.8 168,312 50,328,039 58

>0.9 10,033 1,531,500 33

1 280,676 0 898

Total 498,940 52,941,630 997

boundary. We evaluate all arguments that are acceptable wrt. DC in the kwt-test
set using both the prediction-based ordering and the standard heuristic.

The results, presented in Table 3, indicate that the simple ordering we em-
ployed successfully reduced the need for backtracking in cases with relatively
accurate predictions, however, this approach severely penalizes wrong predic-
tions, which led to an overall increase in backtracking steps. Additionally, using
the simple ordering heuristic, Heureka was unable to solve three AFs within the
10-minute time limit per argument.

To gain deeper insights into the limitations of this approach, we conducted a
detailed analysis of the AF that required the highest number of backtracking
steps. While applying the prediction-based ordering resulted in a staggering
21,482,709 backtracking steps, the standard heuristic was able to resolve this
AF without any backtracking.

Upon closer examination, we discovered that out of the 151 arguments in
this AF, only 9 specific arguments were responsible for all the backtracking
steps. These 9 arguments were the sole accepted arguments that were erroneously
predicted as not accepted by our model. Furthermore, all of these arguments
belonged to the same extension, and critically, none of them belonged to any
other extension. As a result, these crucial arguments, which would be highly
valuable for guiding our search algorithm, ended up being processed toward the
end of the solving process. Consequently, a straightforward ordering approach
proved to be insufficient. To reduce the overall number of required backtracking
steps, a more refined heuristic is needed.

To establish whether an argument a is acceptable wrt. DC, we must identify a
preferred extension E that contains a. Therefore, we want to prioritize arguments
that are most likely part of E. We thus seperate our AF into three distinct
sets: Arguments that are likely not in E (outExt), arguments that defend a
(defenders) and thus have the highest chance to be in E, and arguments that
might be in E (possibleExt). Our refined algorithm starts by adding all arguments
that are in conflict with a to the outExt set. Likewise, arguments predicted to
be outside any extension are categorized within outExt. Subsequently, we then
iterate through the remaining arguments, identifying whether arguments act
as defenders of a by attacking its attackers or whether they undermine E by
targeting arguments likely to be part of E. Arguments that do not fall into the
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categories of defenders or offenders are placed in the possibleExt set. Once all
arguments are processed we determine the heuristic order, making sure, that
all defenders are processed first. This is ensured by multiplying the prediction
probability of each argument in a set by a dedicated factor for said set. Let the
factors used to multiply the prediction confidence values be denoted as x, y, z for
the defenders, possibleExt and outExt sets, respectively. The actual value of the
factors is arbitrary, as long as the following conditions hold: x > y and z > 1.
For more detailed information, please refer to Algorithm 2. In our experiments
we set x = 1000, y = 100, and z = 2.

Algorithm 2: MLPred Heuristic for accepted Arguments

Data: AF aaf , Prediction pred, Query Argument a
Result: Heuristic h

1 attackRelation← AttackRelation(aaf);
2 attackers← attackRelation.attacker set(a);
3 attackeds← attackRelation.attacked set(a);
4 outExt← attackers ∪ attackeds;
5 possibleExt← itemIndex;
6 defenders← ∅;
7 for i = 0; i < pred.args.size()-1; i++ do
8 curAttackeds← attackRelation.attacked set(i);
9 argIsDefender ← curAttackeds ∩ attackers;

10 argIsOffender ← curAttackeds ∩ possibleExt;
11 if pred.predictLabel[i] == YES then
12 if argIsOffender then
13 outExt← i;
14 continue;

15 else if argIsDefender then
16 defenders← i;

17 else
18 possibleExt← i;

19 attackers← attackRelation.attacker set(i);
20 outExt← attackers ∪ curAttackeds;

21 else
22 outExt← i;

23 for arg in defenders do
24 h.order[arg]← pred.predProb[arg] ∗ x
25 for arg in possibleExt do
26 h.order[arg]← pred.predProb[arg] ∗ y
27 for arg in outExt do
28 h.order[arg]← pred.predProb[arg] ∗ z−1
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Table 4. Results for classifying DC arguments in the kwt Dataset using the standard
Heureka heuristic as well as the MLPred heuristic explained in Algorithm 2.

MCC
Standard
Backtracks

Prediction
Backtracks

no of
AFs

>0.7 39,919 358,246 8

>0.8 185,587 4,320,665 60

>0.9 10,101 1,412,926 34

1 280,676 0 898

Total 516,283 6,091,837 1000

Table 5. Results for classifying the kwt Dataset using the standard Heureka heuristic
as well as the MLPred heuristic explained in Algorithm 2 with a threshold of 0.35.

MCC
Standard
Backtracks

Prediction
Backtracks

no of
AFs

>0.7 39,919 31,976 8

>0.8 185,587 226,790 60

>0.9 10,101 8,029 34

1 280,676 0 898

Total 516,283 266,795 1000

Running Heureka using this refined approach yielded a significant reduction
in backtracking, nearly reaching a 90% reduction, and enabling Heureka to suc-
cessfully solve all argumentation AFs within the allocated time, as shown in
Table 4. However, when evaluated against the standard heuristic, it is evident
that the total number of backtracking steps, though significantly improved, still
falls short of matching the performance of the standard heuristic.

Within our dataset, all instances of backtracking occur in AFs where the
predictive accuracy is not perfect. As we have observed during our in-depth
analysis of an individual AF, the quality of predictions can vary not only between
AFs but also among arguments within the same AF. Therefore, we require a
method to make an informed choice of whether we can rely on the predictions
generated by the machine learning model to effectively guide Heureka.

In our algorithm, the defenders set comprises the most critical arguments,
as these directly support our query argument a. We operate on the assumption
that a larger defenders set implies a more informative prediction for guiding
Heureka. We also employ a threshold parameter below, which we opt to use
the standard heuristic instead of the prediction. More specifically, this threshold
dictates the required size of the defenders set in relation to the possibleExt set.
In our experiments, we employed a threshold of 0.35. Re-running Heureka with
this threshold produced the results presented in Table 5.

By implementing the threshold to filter out uninformative predictions, we
successfully reduced the number of backtracking steps by nearly 50%. In the
following section we will evaluate our initial results using larger, more diverse
datasets.
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Table 6. Results for classifying the kwt-large dataset using the standard Heureka
heuristic as well as the MLPred heuristic explained in Algorithm 2 with a threshold of
0.35.

MCC
Standard
Backtracks

YES

No of
AFs

Prediction
Backtracks

YES

No of
AFs

>0.8 42,088,262 31 37,881,987 34

>0.9 90,335,877 60 16,892,061 64

1 1,287,751,506 804 0 896

Total 1,420,175,645 895 54,774,048 994

Table 7. Runtime in seconds for classifying the kwt-large dataset using the standard
Heureka heuristic as well as the MLPred heuristic explained in Algorithm 2 with a
threshold of 0.35.

MCC
Runtime
Standard

Runtime
MLPred

No of
AFs

> 0.8 574 552 31

> 0.9 2,148 475 60

1 30,134 3,885 804

Total 32,856 4,911 895

5.3 Evaluation and Results

The first evaluation experiment involved running Heureka on the kwt-large dataset
using the same prediction quality threshold of 0.35. The MLPred heuristic re-
sulted in a substantial reduction of backtracking steps required for justifying
accepted arguments compared to the standard heuristic, as demonstrated in Ta-
ble 6. Notably, the MLPred heuristic enabled heureka, to successfully solve 994
AFs, whereas the standard heuristic was only able to solve 895 AFs without
encountering timeouts.

We also experienced a drastic decrease in runtime when using the MLPred
heuristic. Table 7 shows an overview over the runtime in seconds needed to solve
the 895 AFs that both heuristics were able to solve completely. The MLPred
heuristic achieved a runtime reduction of 85%. The performance gain achieved
by using the MLPred heuristic is also evident, when comparing the runtime
for individual arguments. Figure 2a shows the runtime comparison for both
heuristics. To limit the overview to instances of a certain difficulty, we only plot
arguments, where the amount of backtracking steps exceeds the mean amount
of backtracking steps for at least one heuristic. We can clearly see, that on the
vast majority of arguments the MLPred heuristic outperformed the standard
heuristic.

In order to assess the performance of the prediction heuristic on a differ-
ent graph type, we ran the same experiments on the Barabasi-test Dataset.
Again, the prediction heuristic resulted in a significant reduction in the need for
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Fig. 2. Runtime per argument for arguments with above-average backtracking steps

backtracking. In fact, as can be seen in Table 8, the need for backtracking was
eliminated almost completely.

We also compared the runtime for both heuristics for the Barabasi dataset.
Interestingly, as is evident in Table 9 the standard heuristic overall was the
faster choice for the AFs both heuristics could solve. This stems from the fact
that Heureka needs more time to parse and build the MLPred heuristic. As
the graphs in this dataset in general can be solved much faster than those in
the Kwt-large dataset, the decreased runtime for the justification process is not
enough to outweigh the overhead added by using the prediction.

However, when comparing the runtime for the individual arguments in Fig-
ure 2b, we can see that for the hardest arguments of this dataset the MLPred
heuristic performed better. Combined with the fact, that the MLPred heuris-
tic was able to solve all AFs of this dataset we can still conclude that using a
machine learning prediction was beneficial when solving the Barabasi dataset.

6 Limitations

Our study primarily focuses on enhancing the solution runtime for arguments
classified as DC. While we successfully utilized machine learning predictions to
guide the Heureka solver in justifying rejected arguments in several test cases,
our approach did not yield satisfactory results when applied to a larger number of
arguments. Additionally, our investigation only considered credulous acceptance
under preferred semantics. Furthermore, we limited our analysis to two different
graph types, namely kwt and barabasi graphs.
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Table 8. Results for classifying the Barabasi dataset using the standard Heureka
heuristic as well as the MLPred heuristic explained in Algorithm 2 with a threshold of
0.35.

MCC
Standard
Backtracks

YES

No of
AFs

Prediction
Backtracks

YES

No of
AFs

>0.5 0 4 2 4

>0.6 1,080 53 362 53

>0.7 2,521,167 467 2,843 481

>0.8 236,081,763 428 1,774 433

>0.9 1,510 29 63 29

Total 238,605,520 981 5,044 1,000

Table 9. Runtime in seconds for classifying the Barabasi dataset using the standard
Heureka heuristic as well as the MLPred heuristic explained in Algorithm 2 with a
threshold of 0.35.

MCC
Runtime
Standard

Runtime
MLPred

No of
AFs

> 0.5 0 0 4

> 0.6 7 17 53

> 0.7 113 294 467

> 0.8 156 243 428

> 0.9 3 6 29

Total 278 561 981

While kwt graphs are intentionally designed to pose a challenge wrt. deciding
DC under preferred semantics, and barabasi graphs are advantageous to our study
due to their tendency to contain a large number of accepted arguments, it would
be beneficial to assess the efficacy of our approach on other graph types in the
future. This assessment should specifically include graphs used as benchmarks
in the International Competition on Computational Models of Argumentation7,
enabling a direct comparison to other state-of-the-art solvers.

We chose a lightweight approach, employing a standard random forest clas-
sifier trained on different graph properties. Although the classification results
were reasonably good, more advanced techniques such as neural networks have
demonstrated even better results and could, therefore, prove beneficial in our
pursuit to improve the runtime of justification algorithms.

7 Conclusion

The goal of our research was to improve the runtime of a search-based solver, by
reducing the backtracking steps needed to justify whether an argument is DC.

7 http://argumentationcompetition.org/index.html

http://argumentationcompetition.org/index.html
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Our study revealed that using machine learning predictions to assist a search-
based solver leads to notable advantages in minimizing backtracking steps and
improving runtime in decision-making processes, specifically in the context of ar-
gument acceptance. The integration of machine learning resulted in a significant
reduction of backtracking steps, achieving a minimum reduction of 96%. Across
all datasets examined, the overall runtime could be decreased by up to 85%.
Furthermore, our approach was able to enhance the solvability of argumentation
frameworks within a specified time constraint.

Further research opportunities could involve combining the classifier and the
solver into a standalone application, eliminating the necessity to provide the
solver with external predictions. However, given that the prediction quality of
the RF classifier depends on the similarity between training and testing data, ex-
ploring alternative classifiers becomes imperative. Existing studies propose that
employing graph neural networks holds promise for achieving robust prediction
results.

Notably, our research did not yield significant improvements for rejected argu-
ments. Subsequent investigations should look into strategies to effectively apply
predictions to rejected arguments.
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