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Abstract—Petri Nets are often used to describe, execute, ana-
lyze and improve business processes. A special area of interest
is the detection of possible deadlocks. Deadlocks can harm the
proper execution of business processes which may lead to errors
or even impossible business process execution, and, in turn,
economic loss. In most cases, it is only determined whether
a deadlock can occur, in order to eliminate or avoid it. For
this, it is necessary to manipulate the behavior of the net, and
thus change it. A so far little considered question is how the
severity of the potential to encounter a deadlock can be formally
investigated and assessed, without altering the net. This could
be useful, for example, to assess and compare systems and
processes. In a naive approach, the exhaustive calculation of
all possible states of the net would be necessary to check in
how many of them a deadlock occurs. This is not reasonable in
most cases due to the often high to potentially indefinite number
of reachable states. In this paper, approaches are developed to
approximate the termination potential of an ordinary marked
Petri Net through structural analysis. We do this by leveraging
approaches from inconsistency measurement, which is a field
within Artificial Intelligence to quantitatively assess the severity
of inconsistency in formal knowledge representation formalisms.
We develop six different measures for the Petri Net setting
and investigate their formal properties, in particular wrt. some
rationality postulates that were also adapted from the field of
inconsistency measurement.

Index Terms—Petri nets, deadlocks, inconsistency measure-
ment

I. INTRODUCTION

Petri Nets are a modeling tool for the description and analysis
of concurrent processes and complex distributed systems. In
contrast to purely sequential models, the dependence and
independence of processes can be represented explicitly and
the limitation of resources can be described. Petri Nets can
therefore be used in various contexts. For instance, business
processes, organizational structures, operating systems, com-
munication protocols and production control systems can be
modeled appropriately. Amongst others, Petri Nets are of
special interest in the field of business process automation
(For an exhaustive overview on Petri Nets see [1]–[5]). Rather
than just describing a business process diagrammatically, Petri
Nets come with a fully formalized, built-in execution concept
that makes it possible to not provide a model of a business
process but also enact business processes based on that model.
However, providing a formalized execution concept does not

protect Petri Nets from execution problems by itself. One such
execution problem is called a deadlock. Deadlocks can harm
the proper execution of business processes which may lead to
errors or even impossible business process execution, and, in
turn, economic loss. Therefore, concepts are needed that detect
deadlocks and rate their severity (see [6] and [7] for example).

In Petri Nets, a deadlock state is called dead marking. To
the best of our knowledge, previous works on the analysis
of possible dead markings focus on existence questions and
a qualitative analysis. If the possibility for dead markings
is detected, all effort is put into solving the problem and
no quantitative evaluation of the severity of the problem is
performed. However, a quantitative analysis of the severity of
such issues can provide deeper insights about the reliability
of the net. This information can be valuable, for example,
for comparing or assessing different nets. Regarding the fact
that the computation of all reachable states of a net is not
feasible, due to the often high to potentially indefinite number
of reachable states [3], [4], [8], and that from a purely structural
analysis it is often not even clear whether the dead marking(s)
found can actually be reached, it seems even more useful to
know how much potential for dead markings there is. This
information can, for example, help to decide, whether a process
should be improved or rather replaced entirely.

The occurrence of dead markings is closely linked to
structures in Petri Nets called deadlocks1. This connection
has already been investigated and is used for the detection
and avoidance of dead markings [7]. In this work, we develop
measures to quantify the presence and severity of deadlocks. We
approach this by using insights from the field of inconsistency
measurement [9], which is concerned with assessing the severity
of conflicts in logical structures. More concretely, we adapt
and extend existing inconsistency measures to the setting of
Petri nets. Compared to the setting of measuring inconsistency
in (classical) logics, Petri nets bring about a new challenge due
to their inherent non-monotonic behaviour: deadlocks may be
introduced and/or resolved when a net is extended. In this work,
we focus on measures that analyse minimal inconsistent subsets
and define corresponding approaches that analyse minimal
deadlocks and address this non-monotonicity aspect as well.
We pursue a principle-based approach to evaluate the quality
of these measures by adapting and motivating a series of



Figure 1. Petri Net

rationality postulates, i. e., desirable criteria for a meaningful
account to such quantitative approaches. We finally analyse
our measures wrt. their compliance to these postulates.

This work is structured as follows: At first, we explain
the necessary background, i. e., we introduce Petri Nets and
their properties and the field of inconsistency measurement
(Section II). We then adapt some existing inconsistency
measures to Petri Nets and define some rationality postulates,
that are potentially desirable properties for our measures
(Section IV). Finally, we discuss the relation to other works,
conclude and give an outlook on what could be done in the
future (Section III).

II. BACKGROUND

This section gives an overview of the basic principles of Petri
Nets (in particular on deadlocks and traps) and inconsistency
measurement.

A. Petri Nets

Petri Nets [1]–[5] are bipartite directed graphs. The set of
nodes consists of so-called places and transitions. Places are
represented by circles, transitions by rectangles (or bars). A
simple Petri Net is shown in Figure 1. The formal notation we
will use here is inspired by the notations used in [3], [10].

Definition 1. A Petri Net is a tuple N = (P, T, I,O) with

P ∩ T = ∅ I,O ⊆ P × T.

where P = {p1, ..., pn} is the set of places, T = {t1, ..., tm}
is the set of transitions, I = {(p, t) | t → p edge of N}
is the set of edges from transitions to places (input), and
O = {(p, t) | p → t edge of N} is the set of edges from
places to transitions (output).

Definition 2. The set •p = {t ∈ T | (p, t) ∈ I} of transitions
connected to a place p by input edges is called pre-set of p
(see Figure 2). The set p• = {t ∈ T | (p, t) ∈ O} of
transitions connected to a place p by output edges is called
post-set of p (see Figure 3). Analogous, this can be defined

1Note that from now on in this work the term deadlock is only used to
refer to the homonymous structure in Petri Nets, and not as a synonym for
dead marking – unless explicitly stated otherwise. The existence of deadlocks
does not necessarily imply that a dead marking will or even can be reached.
In the literature deadlocks are sometimes named siphons or co-traps instead.

Figure 6. t2 is enabled Figure 7. after t2 was fired

for transitions as well, with •t = {p ∈ P | (p, t) ∈ O} and
t• = {p ∈ P | (p, t) ∈ I} and for sets of places/transitions
X ⊆ P ∨X ⊆ T, x ∈ X with •X =

⋃ •x and X• =
⋃
x•

(see Figure 4 and 5).

Figure 2. Pre-set of p1 Figure 3. Post-set of p1

Figure 4. Pre-set of the set {p1, p2} Figure 5. Post-set of the set {p1, p2}

Places can contain tokens, represented by dots. For ordinary
marked nets [8]—the type of Petri Net we consider in this
work—there is no limit to the number of tokens per place.
Transitions behave like switches. If tokens are present at all
places in the pre-set of a transition, the transition is called
enabled. When a transition is fired (switched), a token is taken
from each place in the pre-set and a token is added to each
place in the post-set (see Figure 6 and 7).

The information about how many tokens are located at which
places is called marking and denoted by M . Formally, M is a
function M : P → N where the number of tokens contained
in a place p at M is referred to via M(p). A marked net is
represented by the tuple (N,M) and the initial marking is
denoted by M0.

Some further important notions are as follows:



Figure 8. Dead marking

Figure 9. Deadlock-free Petri Net with source and sink transition

• A transition without input places is called source transition
– it is always enabled and generates tokens without
consuming any.

• A transition without output places is called sink transition.
It only consumes tokens.

• A reachable marking is any marking that can be reached
from M0 by a finite sequence of switching transitions.

• A marking is called dead marking iff no transition is
enabled at this marking. The net is then called blocked.
A net that reaches a dead marking terminates.

• A net is deadlock-free iff no dead marking is reachable, i.e.
every reachable marking enables at least one transition.

• A net is live if for every transition t and every reachable
marking M , there is a reachable marking M ′ that activates
t, i.e. every transition can be activated infinitely often.

In Figure 8 the depicted net is blocked, because no transition
is enabled. In Figure 9, t3 is a source transition and t4 is a sink
transition. Because t3 is always enabled, the net is deadlock-
free. The net from Figure 10 is live, because every transition
can be enabled infinitely often. In Figure 9 in contrast, transition
t1 cannot be enabled, thus the net is not live.

B. Deadlocks and Traps

A deadlock is a subset of places such that its pre-set is
completely contained in its post-set, i. e., every input transition
of any place in the set is as well an output transition for some
place of the set. As a consequence, if there are no tokens in
the set, this cannot change, since no input transition can be
enabled.

Figure 10. Live Petri Net

Figure 11. Part of a Petri Net containing a deadlock

Definition 3. A set of places P ′ ⊆ P is a deadlock, iff •P ′ ⊆
P ′•.

The set of places {p1, p2} from Figure 11 constitutes a
deadlock, since the only input transition is an output transition
for one of the places as well. Other places that are connected
to the same transitions have no influence on this.

Definition 4. A set of places P ′ ⊂ P is a minimal deadlock,
iff it is a deadlock and P ′′ ⊂ P ′ =⇒ •P ′′ 6⊆ P ′′•. The set
of all minimal deadlocks of a net N is denoted by D(N).

Figure 12. Minimal deadlock Figure 13. Non-minimal deadlock

In Figure 12 the places p1, p2 and p3 are constituting a
minimal deadlock, since removing one or two places from the
set would result in an input transition that is not an output
transition for one of the remaining places. In Figure 13 the set
{p1, p2, p3} is a non-minimal deadlock, because {p2, p3} is
still a deadlock, as well as {p2} alone.

A trap is a subset of places such that its post-set is completely
contained in its pre-set, i.e. every output transition of any place
in the set is as well an input transition for some place of the
set.

Definition 5. A set of places P ′ ⊂ P is a trap iff P ′• ⊆ •P ′.



Thus every transition that consumes tokens from the set
generates at least one token inside the trap. Therefore, once
marked, the trap remains marked (i. e. contains at least one
token in total) for all reachable markings. For this reason, a
deadlock containing at least one initially marked trap cannot get
unmarked. Furthermore, if every deadlock in the net contains
an initially marked trap, no dead marking is reachable [4]:
Consider a dead marking Md, i.e. there are no transitions
enabled in the whole net. Consider the set Pu of all unmarked
places of the net. The pre-set of Pu consists of not enabled
transitions, i.e. the pre-set of every transition t ∈ •Pu contains
at least one unmarked place (otherwise the transition would be
enabled), which means all transitions from the pre-set of Pu

are in the post-set as well. Thus Pu is an empty deadlock. This
means, without the existence of an unmarked deadlock, the
marking cannot be dead. Therefore a marked net is deadlock-
free if it does not contain deadlocks without marked trap.
To verify this condition it is sufficient to check the minimal
deadlocks of the net, because every non-minimal deadlock
contains a minimal deadlock by definition.

In Figure 12, {p1, p2, p3} constitutes a minimal deadlock
and a trap at the same time – the deadlock contains a trap.
As we can easily see, if there were tokens in one or more
of the places, the deadlock/trap could not get empty, but at
the same time it cannot get marked at any reachable marking
when it is not marked initially. In Figure 13 on the other hand,
{p1, p2, p3} is as well deadlock and trap at once, but {p2, p3}
and {p2} that are deadlocks as well do not contain a trap.

For more detailed information about deadlocks and traps see
[4], [5], [7], [11].

C. Inconsistency Measurement

The aim of this paper is to quantitatively assess the severity
imposed by deadlocks as an indicator for the net’s (unwanted)
potential to terminate. For that, we will have a brief look at
the research area of inconsistency measurement [9], [12], [13].
Inconsistency measurement is the field that is concerned with
measuring conflicts in logic-based knowledge representation
formalisms. We can identify analogies between Petri Nets and
logic-based formalisms, and then apply measures similar to the
existing ones, instead of developing completely new measures
specifically for Petri Nets. Additionally, we will benefit from
the work in the area of inconsistency measurement when we
come to rationality postulates to assess the quality of the
measures.

Approaches to inconsistency measurement exist for many
different logics, but we will focus on classical propositional
logic here. Propositional logic is based on propositional
variables that can be either true or false. They can form
formulas through connectors ¬ (negation), ∧ (conjunction), and
∨ (disjunction). A set of formulas can define a propositional
language. The assignment of a value to all propositions of a
formula or set of formulas is called interpretation.

We will denote a knowledge base, i. e., a set of formulas,
by K. With At(X), where X is a formula or set of formulas,
we denote the set of propositions contained in X.

A formula or set of formulas X is inconsistent iff there
is no interpretation I on At(X) such that every formula is
satisfied by I under the classical semantics of proposition logic.
Otherwise, X is consistent.

Example 1. Consider the set of formulas K1.

K1 = {r → c, s→ c, s→ f, f → ¬r, r ∧ s}

There is no interpretation, where all formulas of K1 are
satisfied, because r ∧ s would need to be true. But from s
follows f and from f follows ¬r that cannot be true at the
same time as r.

A set M ⊆ K is a minimal inconsistent subset if M is
inconsistent and every proper subset of M is consistent. For
example, the set {s→ f, f → ¬r, r∧ s} constitutes a minimal
inconsistent subset of K1 from Example 1. The set of all
minimal inconsistent subsets of a knowledge base K is denoted
by M(K ).

A formula φ is called free formula if it is not contained
in any minimal inconsistent subset, for instance r → c in
Example 1.

An inconsistency measure is a function that assigns a non-
negative real number to a given knowledge base. Usually, the
value 0 means there is no inconsistency at all, while larger
numbers indicate more inconsistency. We will have a look at
a few measures based on minimal inconsistent subsets from
[14], [15]. A broader overview on inconsistency measurement
can be found in [9].

Definition 6. The M-inconsistency measure [14]:

IM(K) = |M(K)|.

The M-inconsistency measure measures the number of
minimal inconsistent subsets of the knowledge base.

Definition 7. The MC-inconsistency measure [14]:

IMC (K) =
∑

M∈M(K)

1

|M |
.

The MC-inconsistency measure measures the size of the
minimal inconsistent subsets (where larger sets mean less
inconsistency).

Definition 8. The mv-inconsistency measure [15]:

Imv (K) =
|
⋃

M∈M(K)At(M)|
|At(K)|

.

The mv-inconsistency measure measures the proportion of
propositions appearing in minimal inconsistent subsets.

Example 2. We will now apply the measures to K1 = {r →
c, s→ c, s→ f, f → ¬r, r ∧ s} from Example 1:

For the M-measure we need the set of all minimal incon-
sistent subsets of K1 : M(K1) = {{s → f, f → ¬r, r ∧ s}}.
The value of the M-measure is:

IM(K1) = |{{s→ f, f → ¬r, r ∧ s}}| = 1.



The value of the MC-measure is:

IMC (K1) =
1

|{s→ f, f → ¬r, r ∧ s}|
=

1

3
.

For the mv-measure we need the propositions contained in
the minimal inconsistent set(s) of K1 :

⋃
M∈M(K1)

At(M) =
At({s → f, f → ¬r, r ∧ s}) = {r, s, f} and the set of all
propositions of K1 : At(K1) = {r, c, s, f}. The value of the
mv-measure is:

Imv (K1) =
|{r, s, f}|
|{r, c, s, f}|

=
3

4
.

Inconsistency measures are usually evaluated wrt. rationality
postulates [16], i. e., properties describing a desirable behaviour
for special scenarios. We recall some simple ones in the
following.

Consistency
I(K) = 0 iff K consistent, i.e. the value 0 indicates
the absence of inconsistency.

Normalization
0 ≤ I(K) ≤ 1. Normalization allows the comparison
of the values from knowledge bases of different sizes.

Monotony
K ⊆ K ′ =⇒ I(K) ≤ I(K ′) means that adding
information to the knowledge base cannot reduce
inconsistency.

Free-formula independence
I(K) = I(K \ {α}) if α is a free formula. This
means removing free formulas does not change the
amount of inconsistency.

Consistency is satisfied by all introduced inconsistency mea-
sures. Normalization is only satisfied by the mv-measure.
Monotony and free-formula independence are satisfied by all
introduced inconsistency measures, except for the mv-measure.
See [16] for more discussion.

III. DEADLOCK-BASED MEASURES AND RATIONALITY
POSTULATES FOR PETRI NETS

In this section, we will define measures that aim to evaluate
a net’s potential to terminate, using the presence of deadlocks
as an indicator. For this purpose, we will adapt existing
inconsistency measures to Petri Nets and define rationality
postulates. Our analogy to inconsistency of a knowledge base
is a Petri Net’s potential to encounter a dead marking. We
use minimal deadlocks as an analogy to minimal inconsistent
subsets, since both are the smallest subsets which correspond
with the conflict resp. unwanted behaviour.

A. Measures

We begin by applying the three measures for classical
propositional logic introduced in Section II-C to minimal dead-
locks instead of minimal inconsistent subsets. We differentiate
between two types of measures: Measures that take tokens into
account and those that do not.

1) Token-dependent Measures: Token-dependent measures
aim to assess the net’s potential to terminate for a given (initial)
marking M . Since deadlocks containing a marked trap do
not contribute to the net’s potential to terminate, we will use
measures based on minimal deadlocks without marked traps.

Recall the definition of a Petri Net N = (P, T, I,O), where
P is the set of all places of the net, T is the set of all transitions
of the net, I is the set of input edges, and O is the set of
output edges. Recall also the notation (N,M) for a marked
net and D(N) for the set of all minimal deadlocks of a net N .

Additionally we define DM (N), the set of minimal deadlocks
DM ∈ D(N) of the net (N,M), such that D′M ⊆ DM =⇒
D′•M * •D′M or ∀ p ∈ D′M : M(p) = 0. In other words,
DM (N) is the set of all minimal deadlocks of N without a
trap that is marked in M .

Token-dependent measures are then functions taking a net
N and a marking M and returning a non-negative real value
T (N,M).

Definition 9. We define the DM -measure as:

TDM
(N,M) = |DM (N)|.

The DM -measure measures the number of minimal deadlocks
that do not contain a trap that is marked at the marking M .
The value 0 means there are no (minimal) deadlocks without
a marked trap.

Definition 10. We define the DC
M -measure as:

TDC
M
(N,M) =

∑
DM∈DM (N)

1

|DM |
.

The DC
M -measure measures the size of the minimal deadlocks

without initially (at marking M ) marked trap. The larger the
minimal deadlocks without marked trap, the smaller the value
of this measure. This means, larger deadlocks without marked
trap are considered less problematic. Note that, due to the
empty sum evaluating to zero, we have TDC

M
(N,M) = 0 if

DM (N) = ∅.

Definition 11. We define the mrM -measure as:

TmrM (N,M) =
|
⋃

DM∈DM (N)DM |
|P |

.

The mrM -measure measures the proportion of places ap-
pearing in minimal deadlocks without (at marking M ) marked
trap.

Example 3. We will now calculate the values of the introduced
measures for the marked nets (N,M1) shown in Figure 14
and (N,M2) shown in Figure 15. To spot deadlocks and traps
manually, we use the intuition, that a deadlock either contains
a loop, or a place with empty pre-set, and a trap either contains
a loop, or a place with empty post-set. We start by searching
for deadlocks, since traps are only relevant when they are
inside a minimal deadlock.



Figure 14. A marked Petri Net

In Figure 14, we find D1 = {p1, p2, p3, p4} with •D1 =
{t1, t2, t3, t4} ⊆ D1

• = {t1, t2, t3, t4, t5, t6} as only (and
thus minimal) deadlock. Within this deadlock we can find trap
S1 = {p2, p3}, since S1

• = {t2, t3} ⊆ •S1 = {t1, t2, t3}.

In Figure 14, S1 is unmarked, thus for the marked net
(N,M1):

TDM
(N,M1) = |DM1

(N)| = |{D1}| = 1

TDC
M
(N,M1) =

∑
DM∈DM1

(N)
1
|DM | =

1
|D1| =

1
4

TmrM (N,M1) =
|
⋃

DM∈DM1
DM |

|P | = |D1|
|P | = 2

3

Figure 15. The same net with different marking

In Figure 15 the net is the same as in Figure 14, except
for the marking. Thus we have minimal deadlock D1 and the
contained trap S1 again.

In Figure 15, S1 is marked, therefore for the marked net
(N,M2):

TDM
(N,M2) = |DM2

(N)| = |∅| = 0

TDC
M
(N,M2) =

∑
DM∈DM2

(N)
1
|DM | = 0

TmrM (N,M2) =
|
⋃

DM∈DM2
DM |

|P | = |∅|
|P | = 0

2) Token-independent Measures: Token-independent mea-
sures aim to assess a net’s potential to terminate regardless of
the initial marking. The three measures we will introduce here
are based on the minimal deadlocks of the net, disregarding
whether they contain a marked trap or not. Therefore the token-
independent measures can be interpreted as a measure for the
worst markings where all deadlocks are unmarked.

Token-independent measures are then functions taking a net
N and returning a non-negative real value T (N).

Definition 12. We define the D-measure as:

TD(N) = TDM
(N,Mε) = |DMε

(N)| = |D(N)|,

where Mε is the marking at which all places of the net are
unmarked.

At marking Mε, the set of minimal deadlocks without marked
trap DMε

(N) equals the set of all minimal deadlocks D(N),
since all deadlocks are unmarked. The D-measure measures
the number of minimal deadlocks of the net. 0 means there
are no minimal deadlocks (and therefore no deadlocks at all).

Definition 13. We define the DC-measure as:

TDC (N) = TDC
M
(N,Mε)

=
∑

DM∈DMε (N)

1

|DM |
=

∑
D∈D(N)

1

|D|
,

where Mε is the marking at which all places of the net are
unmarked.

At marking Mε, the set of minimal deadlocks without marked
trap DMε

(N) equals the set of all minimal deadlocks D(N),
since all deadlocks are unmarked.

The DC -measure measures the size of the minimal deadlocks.
The larger the minimal deadlocks, the smaller the value of
this measure. This means, larger deadlocks are considered
less problematic. The idea is, that larger deadlocks—as larger
inconsistent subsets—are more “hidden” or indirect than
smaller ones. Therefore they could be less likely to get empty
or to be unmarked initially.

Definition 14. We define the mr-measure as:

Tmr (N) = TmrM (N,Mε)

=
|
⋃

DM∈DMε (N)DM |
|P |

=
|
⋃

D∈D(N)D|
|P |

,

where Mε is the marking at which all places of the net are
unmarked.

At marking Mε, the set of minimal deadlocks without marked
trap DMε

(N) equals the set of all minimal deadlocks D(N),
since all deadlocks are unmarked.

The mr-measure measures the proportion of places appearing
in minimal deadlocks.

Example 4. We will now calculate the values of all six
measures – token-dependent and token-independent ones – for
the net below (Figure 16). We will identify and count the
minimal deadlocks and the minimal deadlocks without marked
trap.



Figure 16. A marked Petri Net

The minimal deadlocks of the depicted net (N,M1) are
D1 = {p2, p3} and D2 = {p1, p4, p5}. The deadlock D1

does not contain a trap. The deadlock D2 contains the trap
S1 = {p4, p5}, which is marked at the depicted marking.

TD(N) = |{D1, D2}| = 2

TDM
(N,M1) = |{D1}| = 1

TDC (N) = 1
|D1| +

1
|D2| =

1
2 + 1

3 = 5
6

TDC
M
(N,M1) =

1
|D1| =

1
2

Tmr(N) = |D1∪D2|
|P | = |{p1,p2,p3,p4,p5}|

|{p1,p2,p3,p4,p5}| =
5
5 = 1

TmrM (N,M1) =
|D1|
|P | = |{p2,p3}|

|{p1,p2,p3,p4,p5}| =
2
5

As we can observe in Example 3 and 4, the values of the
different measures can differ a lot from each other for the same
net. Therefore, it is not clear what the value of a single measure
means for the termination potential of a concrete net in detail.
However, the use of a combination of multiple measures should
yield a rough idea about the condition of the analyzed net. The
token-dependent measures should be viewed as more accurate,
since they are only taking the minimal deadlocks relevant to
the termination potential into account.

B. Rationality Postulates

In this section we will define some rationality postulates for
Petri Nets and show which measures satisfy them. Formally
we will define the postulates for token-dependent measures,
because the corresponding token-independent measures are just
a special case of them. Therefore, for the remainder of this
section let T be an arbitrary token-dependent measure.

Our first postulate in the context of Petri Nets is deadlock-
freeness and it characterises the meaning of the minimal value
of a measure. We say T satisfies deadlock freeness iff

T (N,M) = 0 =⇒ (N,M) is deadlock-free.

For token-independent measures the value 0 means the net
is deadlock-free for all initial markings, i.e. there is no dead
marking reachable from any initial marking.2 If the value of

2In the terms deadlock-free and deadlock freeness, deadlock stands for dead
marking, but apart from that, in this work, the term deadlock indicates the
structure from Definition 3.

a measure is different from 0, the net is not necessarily not
deadlock-free, i.e. the net could still be deadlock-free. We
define deadlock freeness in this manner, because otherwise
all measures based on deadlocks would automatically fail
to satisfy it, since a net can be deadlock-free, although it
contains deadlocks. It could, for example, contain a source
transition, thus making a dead marking impossible (see Figure
17). Even without a source transition, a net could be deadlock-
free for some initial marking(s), if the structure of the contained
deadlocks and their neighbourhood prevent the deadlocks from
getting empty, although some of the deadlocks contain no trap
(see Example 5).

Figure 17. Deadlock-free Petri Net despite contained deadlock (without marked
trap)

Example 5. In Figure 18, the transition t5 is a sink transition,
and D1 = {p1, p2, p3, t4} is a deadlock, since •D1 =
{t1, t2, t3, t4} ⊆ D1

• = {t1, t2, t3, t4, t5}. D1 can only get
empty if t5 is fired, but since p5 is not marked, t5 cannot fire
until t1 got enabled and then fired. When t1 is fired, there are
two tokens produced inside the deadlock, but only one in p5,
thus t5 can only fire once. Therefore, at least one token stays
inside the deadlock. Since this can happen infinitely often, the
net is live and deadlock-free.

If p4 and p5 would both contain exactly one token at the
initial marking (all other places empty), t5 could consume
both tokens, thus resulting in a dead marking.

Figure 18. Deadlock-free (and live) marked Petri Net despite contained
deadlock without any trap; suggested by Li Jiao et al. [17]

In order to assess which measures fulfill deadlock freeness,
we need to understand the connection between dead markings
and deadlocks. As mentioned in Section II-B, if there are
no deadlocks without initially marked trap, there is no dead
marking reachable [4]. This means, without the existence of an



unmarked deadlock, the marking cannot be dead. And since a
marked trap can never get empty (see Section II-B), a deadlock
containing it cannot get empty as well. Therefore a marked
net is deadlock-free if it does not contain deadlocks without
marked trap. This means the absence of deadlocks (without
marked trap) implies deadlock freeness. Therefore, whenever
the value 0 of a measure indicates the absence of deadlocks
(without marked trap), the measure fullfills deadlock freeness.

Our next property is about monotony. In the context of
inconsistency measurement in classical propositional logic,
it is clear that inconsistency cannot be resolved by adding
formulas to a knowledge base. Therefore, a widely accepted
property of inconsistency measures [16] is that they should
behave monotonic, i. e., adding formulas cannot decrease the
inconsistency value. For Petri Nets the situation is a bit
different, since extending a net may resolve deadlocks. We
will investigate this issue a bit deeper now.

Adding or removing places or transitions to a net without
connecting them by edges will not change the existing
deadlocks and traps, since they are determined by their pre-
set and post-set, which depends on edges, and thus cannot
change by adding or removing unconnected places or transitions.
Unconnected places constitute minimal deadlocks themselves,
and they can be added to a deadlock and the resulting set
of places will be a deadlock as well. Therefore, the number
of deadlocks and minimal deadlocks will increase. However,
these unconnected places do not have any influence on the
net’s behaviour.

Adding and removing edges results in different pre-sets or
post-sets of places. Therefore, this can affect the property of a
set of places being a deadlock or trap.

Adding input edges means that the connected transitions
are added to the pre-set of the places they are connected to.
Let P be a set of places and e = (p, t) ∈ I an edge, such
that p ∈ P , t /∈ •P and •P ⊆ P •. Adding edge e means
•Pnew = •P ∪ {t}. If t /∈ P •, then •Pnew * P •, so
P is not a deadlock any more. It was resolved by adding e.
Analogous, a deadlock can emerge by removing an input edge.
Thus adding input edges can resolve deadlocks (see Figure 19
and 20) and removing input edges can generate deadlocks.

Adding output edges means that the connected transitions
are added to the post-set of the places they are connected to.
Let P be a set of places and e = (p, t) ∈ O an edge, such
that p ∈ P , t /∈ P • and •P * P •. Adding edge e means
P •new = P • ∪ {t}. If •P \ P • = {t}, then •P ⊆ P •new.
This means P is a deadlock after adding edge e, but was not
before. Analogous, a deadlock can be resolved by removing an
output edge. Thus adding output edges can generate deadlocks
(see Figure 21 and 22) and removing output edges can resolve
deadlocks.

Figure 19. Deadlock Figure 20. Deadlock resolved by
adding an input edge

Figure 21. No deadlock Figure 22. New deadlock created
by adding an output edge

Table I shows, case by case, how sets of places can or cannot
change their property of being a deadlock or trap by adding
and removing input and output edges. P denotes the set of
places we are investigating. •Pnew denotes the pre-set of P
after adding or removing an input edge connected to a place of
P . Analogous, P •new denotes the post-set of P after adding
or removing an output edge. t denotes a transition that is added
or removed from the pre-set or post-set of P because of the
corresponding added or removed edge. For adding/removing
input edges, t is added/removed to/from the pre-set of P and
for output edges it is added/removed to/from the post-set of P .

From the properties described above, we obtain a monotonic
behaviour (regarding the number of minimal deadlocks and
minimal deadlocks without marked trap) for adding output
edges and for removing input edges. Therefore, we say a
measure T satisfies weak monotony, if the value is equal or
higher when output edges are added or input edges are removed,
formally

ON ⊆ ON ′ , IN ⊇ IN ′ =⇒ T (N,M) ≤ T (N ′,M).

We now turn to the aspect of decomposability, i. e., how do
the values of our measures aggregate when nets are combined?
If adding two nets without connecting them to each other
(and for a marked net, without changing the distribution of
the tokens) results in the values of the measure of the two
nets adding up as well, the measure satisfies weak additivity.
Formally, we say T satisfies weak additivity iff

PN ∩ PN ′ = TN ∩ TN ′ = ∅ =⇒ T ((N,MN ) +
(N ′,MN ′)) = T (N,MN ) + T (N ′,MN ′)



P is a deadlock P is not a deadlock P is a trap P is not a trap

•P ⊆ P • •P * P • P • ⊆ • P P • * • P

Adding an input edge for t /∈ P • : for t = P • \ • P :

•P ⊆ • Pnew •Pnew * P • •Pnew * P • P • ⊆ • Pnew P • ⊆ • Pnew
potentially
fewer deadlocks
and more traps

Removing an input edge for t = • P \ P • : for t ∈ P • :

•Pnew ⊆ • P •Pnew ⊆ P • •Pnew ⊆ P • P • * • Pnew P • * • Pnew

Adding an output edge for t = • P \ P • : for t /∈ • P :

P • ⊆ P •
new

•P ⊆ P •
new

•P ⊆ P •
new P •

new * • P P •
new * • P

potentially
more deadlocks
and fewer traps

Removing an output edge for t ∈ • P : for t = P • \ • P :

P •
new ⊆ P • •P * P •

new
•P * P •

new P •
new ⊆ • P P •

new ⊆ • P
potentially
fewer deadlocks
and more traps

Table I
CONSEQUENCES OF ADDING AND REMOVING INPUT AND OUTPUT EDGES

where (N,MN ) + (N ′,MN ′) = (N +N ′,MN+N ′) with
N +N ′ = (PN ∪PN ′ , TN ∪TN ′ , IN ∪ IN ′ , ON ∪ON ′) and

MN+N ′ =



MN (p
N1)

...

MN (p
Nn)

MN ′(p
N′1)

...

MN ′(p
N′m)


for |PN | = n and

|PN ′ | = m.

If we add two nets without connecting them to each other,
the number of minimal deadlocks adds up as well, i. e. it
will not change for either part of the net. This is, because
without removing or adding new edges, existing deadlocks
cannot change. But since the union of deadlocks is a deadlock
as well, the number of non-minimal deadlocks can change.

Our final property is concerned with the range of possible
values of a measure. We say T satisfies Normalization iff

0 ≤ T (N,M) ≤ 1.

The above four postulates constitute basic desirable proper-
ties for our measures. Part of ongoing work is to adapt further
postulates from, e. g., [16].

Table II shows the compliance of our measures with the above
postulates. The formal proofs of these statements can be found
in an online appendix3.

3http://mthimm.de/misc/proofs_cbi21_udt.pdf

Deadlock Freeness Weak Monotony Weak Additivity Normalization

DM , D 4 4 4 8

DC
M , DC 4 4 4 8

mrM , mr 4 8 8 4

Table II
MEASURES AND POSTULATES

IV. DISCUSSION

The topic of this paper is combining the fields of incon-
sistency measurement and liveness and deadlock analysis in
Petri Nets. The field of inconsistency measurement served as
an inspiration and a template for the measures and postulates
introduced in this paper, while in substance, the topic of this
paper is closer to liveness analysis.

To the best of our knowledge, this is the first approach to
quantitatively assess a Petri Net’s potential to terminate, beyond
stating whether it is deadlock-free or not. However, there has
been a lot of research done around deadlocks and minimal
deadlocks, in particular how to find them and how to prevent
them from getting empty, see e. g. [6], [7].

In this work, novel evaluation criteria for ordinary marked
Petri Net models have been developed. For this purpose, the
parallels between minimal inconsistent sets in propositional
logic and minimal deadlocks have been exploited, as they
are both the smallest subsets that can be associated with the
conflict/unwanted behaviour. In this work, three inconsistency
measures for minimal inconsistent sets have been adapted to
Petri Nets. By defining the three measures in two different
ways, six distinct measures for Petri Nets have been obtained.
Furthermore, four rationality postulates for Petri Net measures
have been defined. The measures can be used to reason about
the reliability of processes or systems modeled with ordinary
marked Petri Nets, without the need to compute reachable
markings.

http://mthimm.de/misc/proofs_cbi21_udt.pdf


V. FUTURE WORK

In this work, we focused on ordinary marked nets, but there
are several other types of Petri Nets, for example free-choice
nets, bounded nets, nets with multi-edges (edge weights) and
more (see for example [2], [4], [5]). Free-choice nets are
only forward branching, thus often making the analysis easier.
Bounded nets have limits for the amount of tokens per place,
so-called place capacities, creating another cause for not firable
transitions because of insufficient place capacities in the post-
set. It would be interesting to develop measures for other
types of nets as well and to investigate whether the measures
introduced in this work can be transferred to different types of
Petri Nets.

In the field of deadlock prevention (here: prevention of dead
markings), often the initial marking gets chosen such that
there are no deadlocks without marked trap – if possible (see
[7] for example). The information about how many places
would need to be marked for this purpose could serve as
another measure for termination potential. Interesting are also
approaches based on elementary deadlocks [6], where the strict
minimal deadlocks (i. e. minimal deadlocks that do not contain
a trap) are categorized as elementary and dependent ones,
such that it is sufficient to monitor the elementary deadlocks.
This means, it might be possible to reduce the problem of
deadlock freeness / termination to less than the set of all
minimal deadlocks without marked trap. It seems therefore
promising to develop further measures specifically for Petri
Nets inspired by concepts used in deadlock prevention.

Another interesting aspect is the relation between deadlock
freeness and liveness, that has already been investigated and is
equivalent for some types of nets and under special restrictions
(see for example [18] and [19]). Although a non-live but
deadlock-free net is considered less problematic than a net
that is not deadlock-free (and therefore not live by definition),
liveness is also a desirable property for Petri Nets. As for
deadlock freeness, there has been some research already. For
example, it has been found, that liveness of an ordinary marked
Petri Net is preserved when adding additional tokens to the
initial marking, iff every deadlock contains at least one trap
(this property is called Liveness Monotonicity [17]). It seems
useful to develop measures for liveness as well.
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