
Distinguishability in Abstract Argumentation

Isabelle Kuhlmann, Tjitze Rienstra, Lars Bengel, Kenneth Skiba, Matthias Thimm
University of Koblenz-Landau

Universitätsstraße 1
56072 Koblenz, Germany

{iskuhlmann, rienstra, larsbengel, kennethskiba, thimm}@uni-koblenz.de

Abstract
In abstract argumentation, the admissible semantics can be
said to distinguish the preferred semantics in the sense that
argumentation frameworks with the same admissible exten-
sions also have the same preferred extensions. In this paper
we present an exhaustive study of such distinguishability rela-
tionships, including those between sets of semantics. We fur-
ther examine restricted classes of argumentation frameworks,
such as self-attack-free and acyclic frameworks. We discuss
the relevance of our results in the context of the argumenta-
tion framework elicitation problem.

1 Introduction
The goal of this paper is to study the notion of distin-
guishability in abstract argumentation. Given a semantics
σ, two argumentation frameworks (AFs, for short) are σ-
indistinguishable if they possess the same σ-extensions. In-
distinguishability can be contrasted with strong equivalence:
two AFs F and G are strongly equivalent under semantics σ
if F]H andG]H possess the same σ-extensions for every
possible AF H , where] represents the operation of merg-
ing two AFs (Oikarinen and Woltran 2011). While strong
equivalence under a wide range of semantics can be nicely
characterized in terms of syntactic criteria called kernels, in-
distinguishability is much harder to characterize and has re-
ceived much less attention in the literature.

Our study is part of, and motivated by, our ongoing re-
search into the argumentation framework elicitation prob-
lem (Kuhlmann 2021). Consider a scenario where we are
faced with an agent who possesses an AF F = (Arg, R).
The goal of AF elicitation is to discover this AF by ask-
ing the agent a number of questions. AF elicitation can be
compared to preference elicitation, which focuses on the
problem of uncovering an agent’s preferences on the basis
of how the agent chooses between alternatives (see (Chen
and Pu 2004) for an overview). It is also related to the
problem of learning AFs from sets of extensions or label-
ings (Riveret and Governatori 2016; Niskanen, Wallner, and
Järvisalo 2019; Kido and Liao 2019). The difference is, how-
ever, that elicitation also involves choosing the questions to
ask, whereas the problem of learning AFs assumes that the
set of extensions or labelings is given.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Let us state the AF elicitation problem more precisely.
We make the simplifying assumption that the set Arg of the
agent’s AF F = (Arg, R) is known, so that we are actually
eliciting the syntactic structure of the attack relation R. We
do so by asking questions on the semantics of the framework
such as “Is E a σ-extension of your AF?” where E ⊆ Arg
and σ is a semantics. The agent has what we call a type,
which is a set X of semantics from which σ may be chosen.
Thus, an agent with type X will truthfully answer, for all
E ⊆ Arg and σ ∈ X , whether E is a σ-extension of her
AF. For an agent with a given type, the overall goal of the
elicitation task is to discover the agent’s AF F by asking a
minimal number of questions.

The problem is that, due to indistinguishability this goal
may actually be unachievable. Consider an agent with type
{co} where co stands for the complete semantics. The best
we can do is discover the co-equivalence class to which the
agent’s AF belongs, which is the set of all AFs possessing
the same co-extensions. We then know that the agent’s ac-
tual AF is a member of this set, but we have no way to know
which one it is. This raises the general question: what ex-
actly can we discover for a given agent type? More precisely:
what is the relationship between an agent’s type and the
equivalence class that we can discover? The goal of this pa-
per is to provide an exhaustive answer to this question, with
a focus on the conflict-free, admissible, complete, grounded,
preferred, stable, and semi-stable semantics. We also con-
sider the case where we know that the AF satisfies properties
such as not having (odd-length) cycles or self-attacks which,
as we will show, puts this question into a different light.

The results we obtain will provide insights into the limits
of what is possible in the context of AF elicitation. Our find-
ings complement the work on realizability of AFs (Dunne
et al. 2015, 2016; Pührer 2020) which explores whether a set
of arguments can be realized as an extension of an AF un-
der a given semantics. Another related problem is presented
in a study conducted by Baroni and Giacomin on agreement
of semantics, i.e. under which conditions a set of extensions
is accepted under multiple semantics (Baroni and Giacomin
2008).

The remainder of this paper is structured as follows.
Section 2 provides some fundamental definitions that our
work is based on. In Section 3 we introduce the theoretical
groundwork as well as our results. We conclude in Section 4.

2 Preliminaries
An argumentation framework is a pair F = (Arg, R) where
Arg is a finite set of arguments and R is a relation R ⊆
Arg × Arg (Dung 1995). An argument a is said to attack
an argument b if (a, b) ∈ R. We say that an argument a is
defended by a set E ⊆ Arg if every argument b ∈ Arg that
attacks a is attacked by some c ∈ E. For a ∈ Arg we define
a− = {b | (b, a) ∈ R} and a+ = {b | (a, b) ∈ R}, i. e.,
the sets of attackers of a and the set of arguments attacked
by a. For a set of arguments E ⊆ Arg we extend these sets
by defining E+

F and E−F via E+
F =

⋃
a∈E a

+ and E−F =⋃
a∈E a

−, respectively.
A semantics determines a set of extensions (i. e., jointly

acceptable sets of arguments) of an AF. Given an AF F =
(Arg, R), an extension E ⊆ Arg is called admissible (ad) if
and only if

1. E is conflict-free (cf), i. e., there are no arguments a, b ∈
E with (a, b) ∈ R, and

2. E defends every a ∈ E,
and is called complete (co) if, additionally, it satisfies

3. if E defends a then a ∈ E.
By imposing more constraints on complete extensions we
can define additional types of semantics. In particular, a
complete extension E is grounded (gr) if and only if E is
⊆-minimal; is preferred (pr) if and only if E is ⊆-maximal;
is stable (st) if and only if Arg = E ∪ E+; and is semi-
stable (sst) if and only if E ∪ E+ is ⊆-maximal among all
complete extensions (Dung 1995; Caminada, Carnielli, and
Dunne 2012). Note that the grounded extension is uniquely
determined and that stable extensions may not exist. We de-
fine Σ = {cf, ad, co, gr, pr, st, sst} to be the set of semantics
considered in this work.1 Given σ ∈ Σ and an AF F , we re-
fer to the set of all σ-extensions as σ(F). The set of all AFs
is denoted Fall.

3 Distinguishability
Based on the previously described AF elicitation problem
we propose our theoretical groundwork. In particular, we in-
troduce the notion of distinguishability in order to articulate
whether knowing the set of extensions w.r.t. a set of seman-
tics X also yields information regarding some other seman-
tics σ 6∈ X . We first need to define X-equivalence between
AFs, with X ⊆ Σ.
Definition 1. Let X ⊆ Σ. Two AFs F and F ′ are X-
equivalent if, for all σ ∈ X , σ(F) = σ(F ′).

If two AFs are {σ}-equivalent we will simply say that
they are σ-equivalent. In the elicitation scenario we are faced
with an agent with a given type X ⊆ Σ. What we are inter-
ested in is: what information can we actually gain from this
agent? We formalize this using the distinguishablity relation
defined as follows.
Definition 2. Let X ⊆ Σ, σ ∈ Σ, and let F be a set of AFs.
We say that X distinguishes σ in F if and only if, for every
pair F, F ′ ∈ F , if F and F ′ are X-equivalent then F and
F ′ are σ-equivalent.

1To simplify presentation, we also treat cf and ad as semantics.

If X distinguishes σ in Fall then any two AFs with differ-
ent σ extensions also have different σ′ extensions for some
σ′ ∈ X . Hence, the information we can gain from an agent
with type X is the σ-equivalence class—or some member
of this class—of the agent’s AF. To see that this is possible,
consider the following simple procedure. We assume that the
set Arg of arguments is known.

1. For every E ⊆ Arg and σ ∈ X ask the agent whether E
is a σ-extension of her AF and remember the answers.

2. Find an attack relation R ⊆ Arg × Arg, such that the
AF F = (Arg, R) agrees with the answers obtained in
step 1. Because the agent is truthful, this attack relation is
guaranteed to exist.

Clearly, if X distinguishes σ then the AF F = (Arg, R)
obtained using this procedure belongs to the σ-equivalence
class of the agent’s AF. This procedure is clearly not ef-
ficient, since it requires asking an exponential number of
questions and trying an exponential number of attack rela-
tions. The question of how to elicit an AF in an efficient
manner will be addressed in future work, however. In this
work we will only focus on distinguishability, which tells us
about what we can elicit from a given agent type.

Let us list some basic properties of distinguishability that
will be useful later.
Proposition 1 (Reflexivity). If σ ∈ X then X distinguishes
σ in F .
Proposition 2 (Monotonicity). If X ⊆ X ′ and X distin-
guishes σ in F then X ′ distinguishes σ in F .
Proposition 3 (Transitivity). If X distinguishes σ in F and
σ ∈ X ′ and X ′ distinguishes σ′ in F then X ∪ X ′ \ {σ}
distinguishes σ in F .

An immediate consequence is:
Proposition 4. If F ′ ⊆ F and X distinguishes σ in F then
X distinguishes σ in F ′.

We may also know that the agent’s AF satisfies cer-
tain graph-theoretical properties such as being acyclic, odd-
cycle-free, or self-attack-free. This may simplify the elicita-
tion task. We represent these classes of AFs as follows.
Definition 3. We define the following sets of AFs:
• Facyclic = {F | F is acyclic }
• Fodd-cycle-free = {F | F contains no odd cycles }
• Fself-attack-free = {F | F contains no self-attacks }

The following theorems provide an overview of the re-
sults. Each theorem summarizes the distinguishability of all
considered semantics w.r.t. a set of AFs F by listing all min-
imal sets of semantics X ⊆ Σ that distinguish a semantics σ
inF . For each theorem we provide proofs of the distinguish-
able cases as well as counterexamples for the maximal set of
semantics X ⊆ Σ that does not distinguish a semantics σ.

Theorem 1 is concerned with the set of all AFs,Fall. Here,
we can only observe that {co} distinguishes gr and pr and
{ad} distinguishes pr. This follows easily from the defini-
tions (Oikarinen and Woltran 2011). Furthermore, it should
be noted that there exists no other set of semantics X ⊆ Σ
that distinguishes a semantics σ in Fall, if σ is not in X .

Theorem 1. For all X ⊆ Σ and σ ∈ Σ, if σ 6∈ X then X
does not distinguish σ in Fall, unless:

1. ad ∈ X and σ = pr

2. co ∈ X and σ ∈ {gr, pr}

Proof. Let F, F ′ ∈ F . If ad(F) = ad(F ′) then pr(F) =
pr(F ′). If co(F) = co(F ′) then pr(F) = pr(F ′) and
gr(F) = gr(F ′) (Oikarinen and Woltran 2011). No other
relation holds in Fall as shown by the following examples:
σ = cf: Example 1, σ = ad: Example 2, σ = co: Exam-
ple 3, σ = gr: Example 4, σ = pr: Example 5, σ = st:
Example 10, σ = sst: Example 11.

In Theorem 2 we are considering the set of self-attack-free
AFs. Besides the exceptions from Theorem 1 we have some
additional cases. The set of semantics {cf, pr} distinguishes
st and sst in Fself-attack-free. From Proposition 3 it follows that
{cf, ad} and {cf, co} also distinguish st and sst. Addition-
ally, {cf, sst} distinguishes st in Fself-attack-free. This means
that, for example, we are able to construct an st-equivalent
AF by only knowing the cf- and pr-extensions.

Theorem 2. For all X ⊆ Σ and σ ∈ Σ, if σ 6∈ X then X
does not distinguish σ in Fself-attack-free, unless:

1. ad ∈ X and σ = pr

2. co ∈ X and σ ∈ {gr, pr}
3. {cf, ad} ⊆ X and σ ∈ {st, sst}
4. {cf, co} ⊆ X and σ ∈ {st, sst}
5. {cf, pr} ⊆ X and σ ∈ {st, sst}
6. {cf, sst} ⊆ X and σ = st

Proof. Cases 1 and 2 follow from Theorem 1 and Proposi-
tion 4. The proof for the cases 3, 4, 5 and 6 is shown below.
All other relations do not hold as shown by the correspond-
ing examples: σ = cf: Example 1, σ = ad: Example 2,
σ = co: example 3, σ = gr: Example 4, σ = pr: Example 5,
σ = st: Examples 6 and 8, σ = sst: Examples 7 and 12.

We will now prove that {cf, pr} distinguishes st in
Fself-attack-free. Let F = (Arg, R) and F ′ = (Arg, R′). As-
sume that F, F ′ ∈ Fself-attack-free. Suppose that cf(F) =
cf(F ′) and pr(F) = pr(F ′) (or ad(F) = ad(F ′) or
co(F) = co(F ′) which implies pr(F) = pr(F ′)).

Let E ∈ ad(F). We will first prove that E+
F = E+

F ′ .
Suppose that E+

F 6= E+
F ′ . Then, either (1) ∃a ∈ Arg : a ∈

E+
F and a /∈ E+

F ′ or (2) ∃a ∈ Arg : a ∈ E+
F ′ and a /∈ E+

F .
In case (1), it follows from the definition of E ∈ ad(F)
that a /∈ E. Then @b ∈ E : (b, a) ∈ R′. That means E ∪
{a} ∈ cf(F ′) and thusE∪{a} ∈ cf(F). But, since we have
cf(F) = cf(F ′) and a ∈ E+

F as well as F, F ′ ∈ Fself-attack-free
it also follows that ∃c ∈ E : (c, a) ∈ R and thus E ∪ {a} /∈
cf(F). Case (2) follows similarly.

We will prove that sst(F) ⊆ sst(F ′). Let E ∈ sst(F).
Then, it follows that E+

F = E+
F ′ . Suppose E /∈ sst(F ′).

Since pr(F) = pr(F ′) we know that E ∈ pr(F ′). So there
must be an E′ ∈ pr(F ′) with E+

F ′ ⊆ E′+F ′ and E′ /∈ sst(F).
But, since pr(F) = pr(F ′) and E′+F = E′+F ′ it would follow
that E′ ∈ sst(F). Thus we have E ∈ sst(F ′) and we can

similarly prove that sst(F) ⊇ sst(F ′). We therefore have
sst(F) = sst(F ′).

The same procedure can be applied to prove {cf, pr} dis-
tinguishes st and {cf, sst} distinguishes st.

In the odd-cycle-free case we have pr = st (Dung 1995)
and st = sst (Caminada, Carnielli, and Dunne 2012). Hence,
{ad} and {co} also distinguish st and sst in Fodd-cycle-free.

Theorem 3. For all X ⊆ Σ and σ ∈ Σ, if σ 6∈ X then X
does not distinguish σ in Fodd-cycle-free, unless:

1. ad ∈ X and σ ∈ {pr, st, sst}
2. co ∈ X and σ ∈ {gr, pr, st, sst}
3. pr ∈ X and σ ∈ {st, sst}
4. st ∈ X and σ ∈ {pr, sst}
5. sst ∈ X and σ ∈ {pr, st}

Proof. Cases 1 to 5 follow from Theorem 1 and the fact that
pr = st = sst in Fodd-cycle-free. All other relations do not
hold as evidenced by the corresponding counterexamples:
σ = cf: Example 1, σ = ad: Example 2, σ = co: Example 3,
σ = gr: Example 4, σ ∈ {pr, st, sst}: Example 8.

In the acyclic case, the co, pr, gr, st and sst semantics co-
incide and thus distinguish each other. Apart from that, they
are also distinguished by ad. Only cf and ad are not distin-
guished by any of the other semantics.

Theorem 4. For all X ⊆ Σ and σ ∈ Σ, if σ 6∈ X then X
does not distinguish σ in Facyclic, unless:

• X ∩ Σ \ {cf} 6= ∅ and σ ∈ {co, pr, gr, st, sst}.

Proof. Follows from the fact that the co, pr, gr, st and sst
semantics coincide in acyclic AFs. Furthermore, ad distin-
guishes pr (Theorem 1) and thus (Proposition 3) also the
others. That {cf} does not distinguish anything is shown by
Example 9. That cf and ad are not distinguished is shown by
Examples 1 and 2.

Below, we list several counterexamples used in the proofs
of the above theorems. The examples consist of two AFs F
and F ′ belonging to a set of AFs F as defined in Defini-
tion 3. In each example we have a set of semantics X ⊆ Σ
for which F and F ′ have the same extensions (i.e. they are
X-equivalent), as well as a semantics σ ∈ Σ under which
they have different extensions. We highlight one extension
that exists in F ′ but not in F under σ semantics using green
color. It follows that X does not distinguish σ in the set of
AFs F .

Example 1. Consider the acyclic AFs F1 =
({a, b, c}, {(a, b)}) and F ′1 = ({a, b, c}, {(c, b)}). Then the
ad, co, gr, pr, st and sst extensions of F1 and F ′1 are the
same but the extensions under cf semantics are different.

Example 2. Consider the acyclic AFs
F2 = ({a, b, c}, {(a, b), (b, c)}) and F ′2 =
({a, b, c}, {(c, b), (b, a)}). Then the cf, co, gr, pr, st
and sst extensions of F2 and F ′2 are the same but the
extensions under ad semantics are different.

Example 3. Consider the odd-cycle-free AFs F3 and F ′3.

F3:
a b

c d e

f

F ′3:
a b

c d e

f

Then the cf, ad, gr, pr, st and sst extensions of F3 and F ′3 are
the same but the extensions under co semantics are different.
Example 4. Consider the odd-cycle-free AFs F4 and F ′4.

F4:
a b

c d

F ′4:
a b

c d

Then the cf, ad, pr, st and sst extensions of F4 and F ′4 are
the same but the extensions under gr semantics are different.
Example 5. Consider the self-attack-free AFs F5 and F ′5.

F5:
ab

c d

e

F ′5:
ab

c d

e

Then the cf, gr, st and sst extensions of F5 and F ′5 are the
same but the extensions under pr semantics are different.
Example 6. Consider the self-attack-free AFs F6 and F ′6.

F6:
a b

c d

F ′6:
a b

c d

Then the ad, co, gr, pr and sst extensions of F6 and F ′6 are
the same but the extensions under st semantics are different.
Example 7. Consider the self-attack-free AFs F7 and F ′7.

F7:
a

b

c

d

e

f

F ′7:
a

b

c

d

e

f

Then the ad, co, gr, pr and st extensions of F7 and F ′7 are the
same but the extensions under sst semantics are different.
Example 8. Consider the odd-cycle-free AFs F8 and F ′8.

F8: a b c F ′8: a b c

Then the cf, gr extensions of F8 and F ′8 are the same but the
extensions under pr, st and sst semantics are different.
Example 9. Consider the acyclic AFs F9 =
({a, b}, {(a, b)}) and F ′1 = ({a, b}, {(b, a)}). Then
the cf extensions of F9 and F ′9 are the same but the
extensions under ad, co, gr, pr, st and sst semantics are
different.
Example 10. Consider the AFs: F10 = ({a, b}, {(a, a)})
and F ′10 = ({a, b}, {(a, a), (b, a)}). Then the cf, ad, co, gr,
pr and sst extensions of F10 and F ′10 are the same but the
extensions under st semantics are different.

Example 11. Consider the AFs F11 and F ′11.

F11:
a

b

c

d e

F ′11:
a

b

c

d e

Then the cf, ad, co, gr, pr and st extensions of F11 and F ′11
are the same but the extensions under sst semantics are dif-
ferent.

Example 12. Consider the self-attack-free AFs F12 and
F ′12.

F12:
a

b

c

d

e

F ′12:
a

b

c

d

e

Then the cf, gr and st extensions of F12 and F ′12 are the same
but the extensions under sst semantics are different.

4 Discussion and Future Work
We studied distinguishability in argumentation and dis-
cussed its relevance in the context of argumentation frame-
work elicitation. The results we obtained answer the ques-
tion: which agent types distinguish which semantics? If we
ignore cases that follow from Propositions 1, 2 and 3 (re-
flexivity, monotonicity and transitivity) then we see that the
ad semantics is not distinguished by anything, not even in
the acyclic case. The co semantics is not distinguished by
anything. The gr semantics is distinguished by co. The pr
semantics is distinguished by ad and co, in the odd-cycle-
free case also by st and sst. Finally, in the cycle-free case,
all semantics except cf and ad distinguish each other. The st
and sst semantics are distinguished in the absence of self-
attacks by {cf, pr}. In the odd-cycle-free case, they are dis-
tinguished by pr and by each other. The st and sst seman-
tics in the self-attack-free case are interesting because they
demonstrate that the cf and pr semantics together distinguish
something that they do not distinguish alone. This is the only
case where “the sum of the parts is greater than the whole”.

Altogether, our results show that AF elicitation is any-
thing but trivial—asking about one semantics usually does
not yield knowledge about other semantics except in the
small number of cases that we identified. Thus, we have to
find more sophisticated methods to elicit AFs. However, the
exceptions we found could serve as a starting point to de-
velop such methods. Therefore, the problem of how to elicit
an AF in an efficient manner is still subject to future work.
For this, we require a procedure to decide which questions
to ask. What is interesting here is the relation between an
agent’s type, the desired equivalence class to elicit, and the
minimum number of necessary questions (as a function of
the number of arguments). For instance, to determine the co-
equivalence class of the agent’s AF, it makes no difference
whether the agent’s type is {co} or {cf, co}. However, the
second type may allow us to elicit the AF more efficiently.

Acknowledgements
The research reported here was supported by the Deutsche
Forschungsgemeinschaft (project numbers 375588274 and
423456621).

References
Baroni, P.; and Giacomin, M. 2008. A systematic classifi-
cation of argumentation frameworks where semantics agree.
Frontiers in Artificial Intelligence and Applications 172: 37.
Caminada, M. W. A.; Carnielli, W. A.; and Dunne, P. E.
2012. Semi-stable semantics. J. Log. Comput. 22(5): 1207–
1254. doi:10.1093/logcom/exr033. URL https://doi.org/10.
1093/logcom/exr033.
Chen, L.; and Pu, P. 2004. Survey of preference elicitation
methods. Technical report. Tech. Rep. IC/200467, Swiss
Federal Institute of Technology in Lausanne (EPFL), Lau-
sanne, Switzerland.
Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artificial Intelligence
77(2): 321–358.
Dunne, P. E.; Dvořák, W.; Linsbichler, T.; and Woltran, S.
2015. Characteristics of multiple viewpoints in abstract ar-
gumentation. Artificial Intelligence 228: 153–178.
Dunne, P. E.; Spanring, C.; Linsbichler, T.; and Woltran,
S. 2016. Investigating the Relationship between Argumen-
tation Semantics via Signatures. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
1051–1057.
Kido, H.; and Liao, B. 2019. A Bayesian Approach to Di-
rect and Inverse Abstract Argumentation Problems. CoRR
abs/1909.04319. URL http://arxiv.org/abs/1909.04319.
Kuhlmann, I. 2021. Towards Eliciting Attacks in Abstract
Argumentation Frameworks. Online Handbook of Argumen-
tation for AI 2.
Niskanen, A.; Wallner, J.; and Järvisalo, M. 2019. Synthe-
sizing argumentation frameworks from examples. Journal
of Artificial Intelligence Research 66: 503–554.
Oikarinen, E.; and Woltran, S. 2011. Characterizing strong
equivalence for argumentation frameworks. Artificial intel-
ligence 175(14-15): 1985–2009.
Pührer, J. 2020. Realizability of three-valued semantics
for abstract dialectical frameworks. Artif. Intell. 278. doi:
10.1016/j.artint.2019.103198. URL https://doi.org/10.1016/
j.artint.2019.103198.
Riveret, R.; and Governatori, G. 2016. On learning attacks
in probabilistic abstract argumentation. In Proceedings of
the 2016 International Conference on Autonomous Agents
& Multiagent Systems, 653–661.

