
On Quasi-Inconsistency and its Complexity

Carl Corea, Matthias Thimm

University of Koblenz-Landau

Abstract

We address the issue of analyzing potential inconsistencies in knowledge
bases. This refers to knowledge bases that contain rules which will always
be activated together, and the knowledge base will become inconsistent,
should these rules be activated. We investigate this problem in the context
of the industrial use-case of business rule management, where it is often
required that sets of (only) rules are analyzed for potential inconsistencies,
e. g., during business rule modelling. To this aim, we introduce the notion of
quasi-inconsistency, which is a formalization of the above-mentioned prob-
lem of potential inconsistencies. We put a specific focus on the analysis of
computational complexity of some involved problems and show that many
of them are intractable.

1. Introduction

Inconsistency is a core problem in knowledge representation and reason-
ing, and usually refers to a knowledge base containing multiple pieces of
information which cannot hold at the same time. For example, consider the
following logic program K1 (we will formalize syntax and semantics later)

K1 = {a; b← a; ¬b← a}.

K1 is inconsistent in the classic-logical sense, as the conclusions b,¬b cannot
hold at the same time.

Handling such inconsistencies is not only subject of research within the
wider area of Knowledge Representation and Reasoning (KR), but also a
problem often faced in practice, for example, in the field of Business Rule
Management (BRM), cf. [1, 2] for an overview or [3, 4, 5] for some recent

1{ccorea,thimm}@uni-koblenz.de

Preprint submitted to Artificial Intelligence April 9, 2020

works. Informally speaking, business rules are declarative statements about
a domain of interest, which are used to model (external) regulations in order
to govern compliant company activities. Inconsistencies in business rule
bases are a challenge within BRM, as they impede using business rules for
their intended purpose of reasoning about allowed company behavior [6].

Consider the exemplary rule base B1 defined via

B1 = {creditworthy ← newCustomer ; ¬creditworthy ← newCustomer}.

In contrast to K1, we see that this business rule base contains only rules,
but no facts (such as a in K1). This is very common in a BRM setting, as
business rules are modelled at design-time (and case-dependent facts will
only be known during process execution). Yet, the company has to warrant
a ”consistent“ rule-base during modelling. In this regard, we see that B1 is
consistent in the classic-logical sense, as no non-trivial inference is possible
without facts. Existing approaches to inconsistency-tolerant reasoning [7]
and inconsistency measurement [8] would therefore not indicate any issue
in this case. Yet, from a business rule management perspective, it does not
make sense to have two rules which will a) always be activated together, but
b) are contradictory, should they be activated. Intuitively, the rules in B1

would become useless for compliance reasoning, given we would encounter a
fact newCustomer during run-time. Thus, methods are needed to analyze
such potential inconsistencies in knowledge bases. This could be useful for
companies, in order to handle modelling errors in the business logic and
facilitate correct compliance reasoning.

In order to address the scenario discussed above, we introduce the notion
of quasi-inconsistency. The intuition is that a rule base, i. e., a knowledge
base containing only rules, is quasi-inconsistent, if there are rules that will
always be activated together but yield inconsistent conclusions. This notion
is a generalisation of the notion of incoherence from description logics and
similar formalisms [9, 10, 11]. In this work, however, we consider a gen-
eral rule-based knowledge representation formalism in order to theoretically
investigate this notion in a broad manner (Section 2). We then define the no-
tion of quasi-inconsistency (Section 3) and examine the complexity of several
computational tasks involving quasi-inconsistency (Section 4). We conclude
with a discussion in Section 5 where we also point out the relationship to
the notion of incoherence.

2

2. Preliminaries

We consider a general but simple monotonic rule-based knowledge rep-
resentation formalism, similar to logic programs with classical negation but
without default negation [12]. Let A be a set of propositional atoms and
L the corresponding set of literals, i. e., L = {a,¬a | a ∈ A} where ¬ is
interpreted as classical negation. We abbreviate ¬a = a and a = ¬a for an
atom a.

A rule r has the form

r : l0 ← l1, . . . , lm. (1)

with l0, . . . , lm ∈ L and m > 1 (note that we require rules to have a non-
empty premise on purpose). We abbreviate head(r) = l0 and body(r) =
{l1, . . . , lm}. Let RL denote the set of all rules. A rule base B is a set of
rules, i. e., B ⊆ RL, and a set of facts (=literals) F ⊆ L is also called fact
base. For X being a rule base or fact base, let A(X) denote the set of atoms
appearing in X.

An important fragment of RL is the set of acyclic rules bases, i. e., rule
bases without any cycles in the rules. More concretely, the dependency graph
GB of a rule base B is a directed graph GB = (B, EB) where (r1, r2) ∈ EB for

r1, r2 ∈ B iff head(r1) ∈ body(r2). Let Racyclic
L ⊆ RL be the set of those rule

bases B ∈ RL where GB is acyclic. Computationally, rule bases in Racyclic

are easier to analyse than general rule bases, as we will see in the remainder
of the paper. However, we will also consider the case of rule bases that may
indeed contain cycles.

Example 1. Consider the rule base B2 defined via

B2 = {b← a; c← b; d← c}.

B2 is acyclic, where GB2 = (B2, EB2) with

EB2 = {(b← a; c← b),

(c← b; d← c)}

A set M ⊆ L of literals is closed wrt. a rule base B and a fact base
F , iff F ⊆ M and for every rule of the form in (1), if l1, . . . , lm ∈ M then
l0 ∈ M . The F -minimal model M of a rule base B, denoted by minF (B)
is the smallest (wrt. set inclusion) closed set of literals. A set M of literals
is called consistent if it does not contain both a and ¬a for an atom a. A
rule base B is called F -consistent if its F -minimal model is consistent. If
not, we call B F -inconsistent. Some obvious properties of F -consistency are
summarised in the following result (given without proof).

3

Proposition 1. Let B be a rule base and F a set of facts.

1. B is ∅-consistent.

2. B is L-inconsistent.

3. If F is inconsistent then B is F -inconsistent.

4. If B is F -inconsistent then B is F ′-inconsistent for every F ⊆ F ′.
5. If B is F -consistent then B is F ′-consistent for every F ′ ⊆ F .

Due to property 3.) and 4.) from above we strengthen the notion of
F -inconsistency as follows. We say that a rule base B is minimally F -
inconsistent if 1.) F is consistent, 2.) B is F -inconsistent, and 3.) for every
F ′ (F , B is F ′-consistent.

Example 2. Consider the rule base B3 and fact base F1, defined via

B3 = {b← a; c← b; ¬c← a}
F1 = {a}

Then we have F1 is a consistent set of facts, B3 is {a}-inconsistent, and B3

is ∅-consistent, thus, B3 is minimally {a}-inconsistent.

3. Quasi-Inconsistency

When considering knowledge bases consisting only of rules, we see from
Proposition 1 that every rule base is consistent in the classic-logical sense,
i. e., ∅-consistent. In this work, we are, however, interested in cases where
there exists a set of facts F , s.t. a rule base becomes F -inconsistent. That is,
we are interested in cases where a rule base will become inconsistent, should
certain facts be introduced. In industrial application scenarios such as busi-
ness rule management, addressing this problem is of high interest, as the
modelling of business rules happens at an earlier point in time, independent
of facts, i. e., it cannot be foreseen which combination of (case-dependent)
facts will occur ”later“ during run-time. Here, it becomes important for
companies to analyze whether there exist potential inconsistencies in the
rule base, such that experts can improve operations and counteract poten-
tial compliance breaches during process execution.

Example 3. Consider the rule base B4 defined via

B4 = {e← a; ¬e← c; c← a; e← b}

4

Observe that B4 is minimally {a}-inconsistent and minimally {b, c}-incon-
sistent. However, the {a}-, resp. {b, c}-inconsistency entail different types
of problems:

The {b, c}-inconsistency says that whenever b and c are added to the rule
base, we activate both ¬e← c and e← b, which yields an inconsistent con-
clusion. However, there can of course be cases where only b, or only c occurs,
thus it is possible to activate the rules individually and draw meaningful con-
clusions from the rule base. It may even be the case that b and c will never
appear together during run-time, because there is some extrinsic constraint
not allowing the two to appear together (for example b could be ”The client
is under-age“ and c could be ”The client is older than 60 years“; although
these two statements are not direct complements of each other, they cannot
be true at the same time). We therefore denote the {b, c}-inconsistency as
a potential issue and we do not consider dealing with these in this paper.

On the other hand, the {a}-inconsistency says that whenever the rule
e ← a is activated, we automatically derive both e and ¬e (because of the
rules c← a and ¬e← c). To clarify, the rules e← a and c← a can either
not be activated at all, or, they will always be activated together but in this
case yield inconsistent conclusions. Thus, these two rules cannot be used for
any meaningful reasoning. We therefore denote the {a}-inconsistency as an
(actual) issue.

Intuitively, it is important to resolve (actual) issues in the scope of busi-
ness rule management, as they clearly indicate a modelling error in the set of
business rules.For that purpose, we will now introduce the notion of quasi-
inconsistency. Informally, we say that a rule base is quasi-inconsistent if it
contains rules that will always be activated together and yield inconsistent
conclusions. For that we need some further notation.

Definition 1 (Rule Set activation). A set of facts X activates a finite set
of rules R iff there is a sequence < r1, . . . , rn > with {r1, . . . , rn} = R such
that

1. body(r1) ⊆ X
2. for all i = 2, . . . , n we have body(ri) ⊆ {head(r1), . . . , head(ri−1)}∪X

A set of facts X minimally (w.r.t. set-inclusion) activates a set of rules R
iff X activates R and there is no proper subset of X that activates R. If X
(minimally) activates R we also say that X is a (minimal) activation set of
R. Let ActSets(R) be the set of minimal activation sets of R.

5

Intuitively, X is a set of facts sufficient for deriving all conclusions of
rules in R. We summarise some obvious properties of activation sets in the
following result (given without proof).

Proposition 2. Let B be a rule base and X,X ′ sets of facts.

1. If X activates B and X ⊆ X ′ then X ′ activates B.

2. If B ∈ Racyclic
L then ActSets(B) = {XB} with

XB =
⋃
r∈B

body(r) \
⋃
r∈B
{head(r)}

In particular, note that 2.) means that acyclic rule bases have uniquely
determined activation sets that have a simple characterisation (and can be
computed in polynomial time).

Example 4. We recall the rule base B2

B2 = {b← a; c← b; d← c}.

For each individual rule, its activation set consists simply of the body of the
rule, i. e., {a} is an activation set of {b← a}. Furthermore, the set {a} also
activates the entire set B2.

Observe that a cyclic rule base may have multiple (minimal) activation
sets.

Example 5. Consider the rule base Bc = {a← b; b← a}. Then both {a}
and {b} minimally activate Bc.

In general, ActSets(R) may become exponential in size. Consider, e. g.,
Ri = {a1 ← b1; b1 ← a1; . . . ; ai ← bi; bi ← ai} with |ActSets(Ri)| = 2i

for i > 0.
We are now ready to define quasi-inconsistency as follows.

Definition 2 (Quasi-Inconsistency). Let R1, R2 ⊆ RL be rule bases and
X1, X2 be consistent sets of literals. A tuple (R1, X1, R2, X2) is called an
issue iff

1. X1 ⊆ X2.

2. X1 minimally activates R1.

3. X2 minimally activates R2.

4. R1 is X1-consistent and R2 is X2-consistent.

5. R1 ∪R2 is X2-inconsistent.

6

A tuple (R1, X1, R2, X2) is called a minimal issue iff there are no R′1, R
′
2, X

′
1,

X ′2 with R′1 ⊆ R1 and R′2 ⊆ R2 (one of these set inclusions being proper)
such that (R′1, X

′
1, R

′
2, X

′
2) is an issue.

A rule base B is quasi-inconsistent iff there is an issue (R1, X1, R2, X2)
with R1, R2 ⊆ B. Then we also say that (R1, X1, R2, X2) is an issue of B.
Let Issues(B), MinIssues(B) be the set of all (minimal) issues of B, respec-
tively.

In other words, an issue (R1, X1, R2, X2) describes a case where the
activation of one set of rules R1 implies the activation of a second set of
rules R2 and both sets together derive an inconsistency (while being consis-
tent on their own). Note that for acyclic rule bases we can write an issue
(R1, X1, R2, X2) simply as (R1, R2) as the minimal activation sets X1 and
X2 are uniquely determined, cf. Proposition 2.

Example 6. Consider the following rule bases B5–B7, defined via

B5 = {c← a; ¬c← a, b}
B6 = {c← a, b; ¬c← a, d; d← b}
B7 = {c← a, f ; ¬c← h, d; d← b; f ← b; h← a}

Then for

t1 = ({c← a}, {a}, {¬c← a, b}, {a, b})
t2 = ({c← a, b}, {a, b}, {d← b;¬c← a, d}, {a, b})
t3 = ({f ← b; c← a, f}, {a, b},

{d← b; h← a; ¬c← h, d}, {a, b})

we have that t1 is an issue of B5, t2 is an issue of B6, and t3 is an issue of
B7. Hence, all these rule bases are quasi-inconsistent (while being classically
consistent).

Example 7. We recall the business rule base B1 from the introduction

B1 ={creditworthy ← newCustomer ;

¬creditworthy ← newCustomer}.

Then we have that

t4 =({creditworthy ← newCustomer}, {newCustomer},
{¬creditworthy ← newCustomer}, {newCustomer})

is a minimal issue of B1, i. e., B1 is quasi-inconsistent (despite being classi-
cally consistent).

7

We conclude this section with a result summarising some general prop-
erties of quasi-inconsistency (proofs are straightforward and omitted).

Proposition 3. Let B1,B2 be rule bases.

1. If B1 is quasi-inconsistent and B1 ⊆ B2 then B2 is quasi-inconsistent.

2. If B1 ⊆ B2 then Issues(B1) ⊆ Issues(B2).

3. If B1 ⊆ B2 then MinIssues(B1) ⊆ MinIssues(B2).

The means to detect quasi-inconsistency proposed in this work heavily
rely on the notion of (minimal) issues. Especially as we envisage to apply
our results to support an industrial use-case, the actual computation of
issues needs to be addressed. In the following, we therefore investigate the
computational complexity of various problems related to quasi-inconsistency.

4. Computational complexity

We assume familiarity with basic concepts of computational complexity
and basic complexity classes such as P and NP, see [13] for an introduction.

We start with analysing the complexity of verification tasks pertaining
to issues.

Lemma 1. Let B be a rule base, R1, R2 ⊆ B, and X1, X2 consistent sets
of literals. Checking whether (R1, X1, R2, X2) is an issue can be done in
polynomial time.

Proof. We go through the properties of an issues step by step (compare with
Definition 2):

1. Checking X1 ⊆ X2 is obviously polynomial.

2. Checking that X1 activates R1 is simple forward propagation (check
every rule whether it can be activated with X1 alone; if yes add the
head of that rule to X1 and continue). In order to check that X1

minimally activates R1 it suffices to check whether X ′1 ⊆ X1 where X ′1
has exactly one fact less than X1 does not activate R1 (for all such
X ′1, which are exactly |X1| many)

3. Checking that X2 activates R2 is analogous.

4. Checking X1 ∪ R1 6|=⊥ is simple forward propagation and checking
whether the set of derived literals is consistent; analogous for X2 ∪
R2 6|=⊥.

5. Checking X1 ∪R1 ∪X2 ∪R2 |=⊥ is analogous.

8

A bit surprisingly maybe, even verifying minimal issues can be done in
polynomial time.

Lemma 2. Let B be a rule base, R1, R2 ⊆ B, and X1, X2 consistent sets of
literals. Checking whether (R1, X1, R2, X2) is a minimal issue can be done
in polynomial time.

Proof. Checking whether (R1, X1, R2, X2) is an issue can be done as in
Lemma 1. For minimality, we check for each R′1 ⊆ R1, R

′
2 ⊆ R2, where

exactly one of R′1, R
′
2 contains one rule less, whether X1∪R′1∪X2∪R′2 |=⊥.

If that is the case, (R1, X1, R2, X2) cannot be a minimal issue. Note that
there are only polynomially many tuples (|R1|+ |R2|) to check, each check
being polynomial, cf. the proof of Lemma 1.

Let us now turn to our central notion of quasi-inconsistency and the task
to check whether a rule base is quasi-inconsistent:

Dec-QI Input: rule base B
Output: true iff B is quasi-inconsistent

It turns out that Dec-QI is intractable even for acyclic rule bases.

Proposition 4. Dec-QI is NP-complete. This remains true even for Racyclic
L .

Proof. In order to show NP-membership consider the following non-determi-
nistic algorithm. On input B, first guess sets of rules R1, R2 with R1, R2 ⊆ B
and consistent sets of literals X1, X2. If t = (R1, X1, R2, X2) is an issue of
B, return true, otherwise return false. Observe that this check can be
done in polynomial time according to Lemma 1. This shows Dec-QI ∈ NP.

In order to show NP-hardness we reduce the classical satisfiability prob-
lem Sat to Dec-QI. Let Φ be an instance of Sat over the signature A (=set
of atoms), i. e., Φ = C1∧. . .∧Cn where each Ci = li,1∨. . .∨li,n(i) with literals
li,1, . . . , li,n(i) over A for i = 1, . . . , n (recall that a literal is either an atom
a ∈ A or its negation ¬a). The question is whether Φ is satisfiable, i. e.,
whether we can find an interpretation I : A→ {T,F} s. t. for all i = 1, . . . , n
there is a k ∈ {1, . . . , n(i)} with I(l) = T (if l = li,k is an atom) or I(l′) = F
(if ¬l′ = li,k is a negated atom). On input Φ we construct a rule base BΦ

as follows. For each clause Ci, i = 1, . . . , n, we create two new atoms αi,
α′i (both with the informal meaning that αi/α

′
i is derivable in BΦ if Ci is

satisfied). For each clause Ci = l1,1 ∨ . . . ∨ l1,n(i) we construct 2n(i) rules of
the form

Bi = {αi ← li,1; . . . ; αi ← li,n(i); α′i ← li,1; . . . ; α′i ← li,n(i)}

9

Then we create yet another new atom π and define BΦ to be composed of
the above rules and two further rules:

BΦ = B1 ∪ . . . ∪ Bn ∪ {π ← α1, . . . , αn; ¬π ← α′1, . . . , α
′
n}

We claim that Φ is satisfiable iff BΦ is quasi-inconsistent. We first show that
satisfiability of Φ implies quasi-inconsistency of BΦ. Let I be an interpre-
tation that satisfies Φ. Without loss of generality, for each clause Ci let l1,i
be the literal that is satisfied by I (can be easily achieved by reordering the
literals in each clause). Define X = {l1,1, . . . , l1,n} to be the set of all these
literals. Furthermore, define

R = {α1 ← l1,1; . . . ; αn ← l1,n}
R′ = {α′1 ← l1,1; . . . ; α′n ← l1,n}
R1 = R ∪ {π ← α1, . . . , αn}
R2 = R′ ∪ {¬π ← α′1, . . . , α

′
n}

By construction, X activates R and R′. Let X ′ ⊆ X s. t. X ′ minimally
activates R resp R′. Then X ′ also minimally activates both R1 and R2.
It follows that (R1, X1, R2, X1) is an issue of BΦ showing that the latter
is quasi-inconsistent. For the other direction, assume that BΦ is quasi-
inconsistent and let (R1, X1, R2, X1) be an issue of BΦ. Observe that the
only rules able to derive contradictory claims in BΦ are the two rules with
heads π and ¬π, respectively. So one of these rules must be in R1 and
the other in R2 (if they both would be in one of them this would violate
condition 4 of Definition 2). Assume π ← α1, . . . , αn ∈ R1, in order to
activate this rule, one rule for each αi, i = 1, . . . , n needs to be present in
R1. Moreover, for each such rule, one of the literals of the corresponding
clause must be present in an activation set X1. From these literals, an
interpretation I can be constructed satisfying all clauses Ci, i = 1, . . . , n
in analogy to the reverse direction before (note that this interpretation is
partial, not all propositions need to occur in X1 ∪ X2; however, the truth
value of the remaining propositions is irrelevant and can be set arbitrary).

Finally, observe that BΦ is of polynomial size wrt. Φ. This gives a
polynomial-time reduction from Sat to Dec-QI, showing that the latter
is NP-hard. The reader can easily verify that the construction above yields
an acyclic rule base, also showing NP-hardness for this special case.

Moreover, Given a rule r ∈ B, checking whether r is contained in at least
one minimal issue is also intractable.

10

Lemma 3. Let B be a rule base and r ∈ B. Checking whether there is a
minimal issue (R1, X1, R2, X2) with r ∈ R1 ∪R2 is NP-complete.

Proof. For NP-membership, we guess a tuple (R1, X1, R2, X2) with r ∈ R1∪
R2 and check in polynomial time using Lemma 2 whether (R1, X1, R2, X2)
is a minimal issue.

For NP-hardness, we use the exact same reduction as in the proof of
Proposition 4 and ask whether the rule π ← α1, . . . , αn is contained in a
minimal issue. This is exactly the case iff the input CNF formula Φ is
satisfiable.

We now consider some counting problems related to issues:

#Issues Input: rule base B
Output: |Issues(B)|

#MinIssues Input: rule base B
Output: |MinIssues(B)|

Using a similar reduction as in the proof of Proposition 4 we can show the
following results.

Proposition 5. #Issues and #MinIssues are #P-complete.2

Proof. For #P-membership, Lemmas 1 and 2 already showed that checking
whether a given tuple (R1, X1, R2, X2) is a (minimal) issue can be decided
in polynomial time. It follows that #Issues and #MinIssues are in #P.

For showing hardness, we reduce the problem #1-3-SAT to our problems
that has been shown to be #P-complete in [14]. Given a formula Φ over
A = {a1, . . . , am} in 3-CNF, i. e., a formula of the form Φ = (l1,1 ∨ l1,2 ∨
l1,3) ∧ . . . ∧ (ln,1 ∨ ln,2 ∨ ln,3) (with exactly 3 literals per clause), we ask for
the number of those interpretations I : A → {T,F} s. t. for all i = 1, . . . , n
there is exactly one k ∈ {1, . . . , n(i)} with I(l) = T (if l = li,k is an atom)
or I(l′) = F (if ¬l′ = li,k is a negated atom). We call an interpretation
satisfying this condition 1-3-model of Φ. On input Φ we construct a rule
base BΦ as follows. For each clause Ci, i = 1, . . . , n, we create two new
atoms αi, α

′
i (both with the informal meaning that αi/α

′
i is derivable in BΦ

if Ci is satisfied). For each clause Ci = li,1 ∨ li,2 ∨ li,3 we construct six rules

2#P is the complexity class of counting problems where the problem of deciding whether
a particular element has to be counted is in P.

11

of the form

Bi = {αi ← li,1, li,2, li,3;

α′i ← li,1, li,2, li,3;

αi ← li,1, li,2, li,3;

α′i ← li,1, li,2, li,3;

αi ← li,1, li,2, li,3;

α′i ← li,1, li,2, li,3}

Moreover, we create new atoms δ1, . . . , δm and construct the following rules

BA = {δi ← ai; δi ← ¬ai | i = 1, . . . ,m}

Then we create yet another new atom π and define BΦ to be composed of
the above rules and two further rules:

BΦ = B1 ∪ . . . ∪ Bn ∪ BA ∪ {π ← α1, . . . , αn, δ1, . . . , δm;

¬π ← α′1, . . . , α
′
n, δ1, . . . , δm}

We now claim that the number of 1-3-models of Φ is exactly the number of
issues of BΦ, which is exactly the number of minimal issues of BΦ.

Let I be a 1-3-model if Φ. Define (X,R1, X,R2) via

X = {a | a ∈ A, I(a) = T} ∪ {¬a | a ∈ A, I(a) = F}
RA = {δi ← ai | ai ∈ X} ∪ {δi ← ¬ai | ¬ai ∈ X}
R1 = RA ∪ {π ← α1, . . . , αn, δ1, . . . , δm}
∪ {αi ← li,1, li,2, li,3 | I(li,1) = T, I(li,2) = F, I(li,3) = F, i = 1, . . . , n}
∪ {αi ← li,1, li,2, li,3 | I(li,1) = F, I(li,2) = T, I(li,3) = F, i = 1, . . . , n}
∪ {αi ← li,1, li,2, li,3 | I(li,1) = F, I(li,2) = F, I(li,3) = T, i = 1, . . . , n}

R2 = RA ∪ {¬π ← α′1, . . . , α
′
n, δ1, . . . , δm}

∪ {α′i ← li,1, li,2, li,3 | I(li,1) = T, I(li,2) = F, I(li,3) = F, i = 1, . . . , n}
∪ {α′i ← li,1, li,2, li,3 | I(li,1) = F, I(li,2) = T, I(li,3) = F, i = 1, . . . , n}
∪ {α′i ← li,1, li,2, li,3 | I(li,1) = F, I(li,2) = F, I(li,3) = T, i = 1, . . . , n}

Observe that for each clause Ci, i = 1, . . . , n both R1 and R2 contain exactly
one rule with head αi and α′1, respectively, and that exact rule is activated
by X. It follows that X minimally activates both R1 and R2. Furthermore,

12

X ∪R1 6|=⊥, X ∪R2 6|=⊥, and X ∪R1∪R2 |=⊥ and therefore (X,R1, X,R2)
is an issue of BΦ. (X,R1, X,R2) is also a minimal issue as every rule in R1

and R2 is needed to entail π and ¬π, respectively.
Conversely, let (X1, R1, X1, R2) be any issue. As the only derivable con-

flict in RΦ is between π and ¬π, the corresponding rules must be present in
R1 and R2, respectively. Assume π ← α1, . . . , αn, δ1, . . . , δm ∈ R1 then there
has to be at least one rule from {δi ← ai; δi ← ¬ai} for each i = 1, . . . ,m
in R1. As X must be consistent not both rules can be activated, so there is
exactly one of these rules in R1. It also follows that X1 is exactly the union
of the premises of that rules. Due to X1 ⊆ X2 and X2 must be consistent
it follows X1 = X2 (the addition of any literal makes X1 inconsistent). For
each αi there must be at least one of the three rules with head αi in R1,
otherwise αi could not be derived. As at most one of these rules can be
activated by X1, there is exactly one of the three rules in R1 (which is also
activated, otherwise (X1, R1, X1, R2) would not be an issue). The same ap-
plies to R2 and the rules with head α′. Now observe that (X1, R1, X1, R2)
is also a minimal issue as every rule in R1 and R2 is needed to entail π and
¬π, respectively. Moreover, define now an interpretation I via I(a) = T if
a ∈ X1 and I(a) = F if ¬a ∈ X1. As X1 activates each rule with head αi for
i = 1, . . . , n, I satisfies exactly one literal of each clause Ci. It follows that
I is a 1-3-model of Φ.

It follows that each 1-3-model of Φ corresponds exactly to one (minimal)
issue of BΦ. Therefore, their number is exactly the same. As BΦ is of
polynomial size wrt. Φ we have shown that both #Issues and #MinIssues
are #P-hard.

5. Discussion and Conclusion

In this paper, we addressed the problem of potential inconsistencies in
rule bases. As motivated in the introduction, this use-case is very com-
mon in domains such as business rules management, where rules that will
always be activated together (but yield inconsistent conclusions) relate to
actual modelling errors and need to be resolved by experts. To this aim, we
introduced the notion of quasi-inconsistency and discussed various aspects
related to the computational complexity on this matter.

Our notion of quasi-inconsistency is a generalisation of incoherence [9,
10, 11]. The notion of incoherence refers to the problem of unsatisfiable
concepts in, e. g., description logics. For example, consider the description
logic statements A v B (every A is a B), A v C (every A is a C) and
B u C v⊥ (there is nothing that is both B and C). Here, the concept A

13

is unsatisfiable, because in the presence of an individual that is of concept
A, we derive an inconsistency. Phrased in our (propositional) language,
an unsatisfiable concept corresponds to a (minimal) issue (R1, X1, R2, X2)
where X1 = X2 is a singleton set. Therefore, quasi-inconsistency covers a
wider spectrum of phenomena than that of incoherence.

Our results can be used to provide companies with an initial analysis
of potential inconsistencies in business rule bases, and thus promotes in-
consistency handling in the scope of business rule management. While our
investigation on computational complexity showed that many problems are
intractable (in the worst case), it has to be noted that this in line with results
from classical inconsistency measurement [15], which investigates similar
problems as we do. Actually, there are many classical inconsistency mea-
sures where decisions variants of computing their value, are higher up the
polynomial hierarchy than ”merely“ NP. Indeed, the NP-completeness result
of Proposition 4 and the #P-result of Proposition 5 allows us to use mature
satisfiability solving and model counting techniques [16] for our problems.
While this work focuses on an initial detection of potential inconsistencies,
due to the close relation to the field of inconsistency measurement, it seems
promising to also investigate means for assessing the severity of potential
inconsistencies, which is part of future work.

Acknowledgements

This research is part of the research project ”Handling Inconsistencies in
Business Process Modeling“, which is funded by the German Research As-
sociation (reference number: DE1983/9-1).

References

[1] I. Graham, Business rules management and service oriented architec-
ture: a pattern language, John wiley & sons, 2007.

[2] M. L. Nelson, R. Sen, Business rules management in healthcare: A
lifecycle approach, Decision Support Systems 57 (2014) 387–394.

[3] K. Batoulis, M. Weske, Disambiguation of DMN decision tables, in:
Business Information Systems - 21st International Conference, 2018,
pp. 236–249.

[4] K. Smit, M. Zoet, M. Berkhout, A verification framework for business
rules management in the dutch government context, International Jour-
nal On Advances in Systems and Measurements 12 (2019) 101–112.

14

[5] C. Corea, P. Delfmann, Quasi-inconsistency in declarative process mod-
els, in: International Conference on Business Process Management,
Springer, 2019, pp. 20–35.

[6] M. Hashmi, G. Governatori, H.-P. Lam, M. T. Wynn, Are we done
with business process compliance: state of the art and challenges ahead,
Knowledge and Information Systems 57 (1) (2018) 79–133.

[7] A. Hunter, L. Bertossi, T. Schaub (Eds.), Inconsistency Tolerance,
Springer, 2005.

[8] M. Thimm, Inconsistency measurement, in: Proceedings of the
13th International Conference on Scalable Uncertainty Management
(SUM’19), 2019, pp. 9–23.

[9] C. A. D. Deagustini, M. V. Martinez, M. A. Falappa, G. R. Simari, How
does incoherence affect inconsistency-tolerant semantics for datalog±?,
Annals of Mathematics and Artificial Intelligence 82 (2018) 43–68.

[10] G. Flouris, Z. Huang, J. Z. Pan, D. Plexousakis, H. Wache, Inconsisten-
cies, negations and changes in ontologies, in: Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI’20), AAAI Press,
2006, pp. 1295–1300.

[11] G. Qi, A. Hunter, Measuring incoherence in description logic-based
ontologies, in: Proceedings of the 6th international The semantic
web and 2nd Asian conference on Asian semantic web conference,
ISWC’07/ASWC’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp.
381–394.

[12] M. Gelfond, V. Lifschitz, Classical negation in logic programs and dis-
junctive databases, New Generation Computing 9 (1991) 365–385.

[13] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[14] N. Creignou, M. Hermann, On #p-completeness of some counting prob-
lems, Tech. rep., INRIA (1993).

[15] M. Thimm, J. P. Wallner, On the complexity of inconsistency measure-
ment, Artificial Intelligence 275 (2019) 411–456.

[16] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of
Satisfiability, Vol. 185 of Frontiers in Artificial Intelligence and Appli-
cations, IOS Press, 2009.

15

