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Abstract An inconsistency measure is a function map-

ping a knowledge base to a non-negative real number,

where larger values indicate the presence of more signif-

icant inconsistencies in the knowledge base. In order to

assess the quality of a particular inconsistency measure,

a wide range of rationality postulates has been proposed

in the literature. In this paper, we survey 15 recent ap-

proaches to inconsistency measurement and provide a

comparative analysis on their compliance with 18 ratio-

nality postulates. In doing so, we fill the gaps in previ-

ous partial investigations and provide new insights into

the adequacy of certain measures and the significance

of certain postulates.

Keywords inconsistency measurement · rationality
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1 Introduction

A general challenge in knowledge representation and

reasoning is the handling of uncertain and inconsistent

information. The notion of uncertainty here refers to

the graded or just unknown assessment of being “true”
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of some piece of information, from a subjective point

of view of a decision-making agent such as a human

being. Most of the information any agent possesses is

not necessarily strictly true in the actual world and

agents have to take into account both uncertainty of

factual beliefs—such as “John was supposedly on va-

cation” and uncertainty on the applicability of rules

when deriving new information—such as “When going

on vacation, John usually takes his kids with him”—.

A related notion is inconsistency, which refers (usually)

to multiple pieces of information and represents a con-

flict between those, i. e., they cannot hold at the same

time. The two statements “John is on vacation in Cal-

ifornia” and “John is at home in New York” represent

inconsistent information and in order to draw meaning-

ful conclusions from a knowledge base containing these

statements, this conflict has to be consolidated some-

how. Several fields address the challenge of dealing with

inconsistencies by considering different perspectives on

the reasons why inconsistencies occur. For example, be-

lief revision [12] considers the scenario where the a pri-

ori beliefs of an agent are consistent and a new piece of

information—that is potentially contradicting previous

beliefs—has to be consistently incorporated in order to

obtain the a posteriori beliefs. Similarly, belief merging

[25] considers the scenario where multiple belief sets of

different agents have to be merged in order to obtain

a coherent view on the joint beliefs. While these ap-

proaches aim at resolving inconsistencies in the classic-

logical sense, other approaches such as paraconsistent

logics [3] provide inconsistency-tolerant semantics in
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order to be able to reason under inconsistency. There

are also some works dealing with both inconsistency

and (quantitative) uncertainty at the same time such

as belief revision and merging for probabilistic knowl-

edge [22,4,38,7].

A quantitative treatment of the challenge of deal-

ing with inconsistencies in knowledge representation is

provided by the field of inconsistency measurement, see

e. g. [13,9] for some early surveys. In this field, the

main object of research is the inconsistency measure,

i. e., a function that assign a non-negative real value

to a knowledge base with the informal meaning that

larger values indicate a larger inconsistency. These mea-

sures are useful for the tasks of analyzing knowledge

bases in general [44], identifying the culprits of inconsis-

tency [16], as well as manual and automatic debugging

of knowledge bases [10,38] and inconsistency-tolerant

reasoning [39]. The traditional setting for inconsistency

measurement is that of classical propositional logic and,

beginning with Knight’s inconsistency measure from

[23,24], a lot of proposals of inconsistency measures

have been made for this setting [23,13,15,16,31,34,49,

10,11,32,19,47]. While there are also approaches to in-

consistency measurement based on logics incorporating

uncertainty [5,36,43,35,6], we will focus our study here

on the classical setting as the variety of different mea-

sures in other settings is rather small.

In [14], a first formal proposal was given on what

properties a basic inconsistency measure should sat-

isfy. In that work, Hunter and Konieczny proposed the

properties consistency (the inconsistency value should

be zero iff the knowledge base is consistent), normaliza-

tion (the inconsistency value should range between zero

and one), monotony (adding formulas to the knowledge

base should not decrease the inconsistency value), free

formula independence (“innocent” formulas can be re-

moved from the knowledge base without changing the

inconsistency value), and dominance (semantical weak-

ening of certain formulas should not increase the incon-

sistency value), to be desirable properties that should

be satisfied by a meaningful account to inconsistency

measurement. In [16] the property normalization was

classified as an additional property and later works such

as [11] also did not include dominance in the core set of

desirable properties. Following [14] several other works

[42,16,33,34,43,2] also proposed new rationality postu-

lates, either to replace previously proposed postulates

or to extend them. Although these postulates were pro-

posed to evaluate the rationality of concrete approaches

to inconsistency measurement, only a few of them have

been evaluated wrt. only a subset of the postulates in

the references mentioned before.

In this paper, we provide a comprehensive evalua-

tion of 15 inconsistency measures from the recent litera-

ture [15,16,10,24,47,11,34,21,49,8] wrt. 18 rationality

postulates proposed in [14,42,16,33,34,43,2]. We con-

duct this evaluation objectively and refrain from dis-

cussing the actual rationality of certain postulates and

the meaningfulness of certain inconsistency measures

in the light of satisfying (or violating) them. In [2],

Besnard provides a critical examination of some of the

basic postulates mentioned above and we would like to

point the interested reader to this work for some ex-

cellent discussion on this topic. Similar discussions can

also be found in [33,34]. The present paper shall serve

as an overview of the state-of-the-art and as collection

of various technical results on the compliance of ratio-

nality postulates.

The main contribution of this paper is summarized

in Table 1 where the compliance of each of the con-

sidered 15 inconsistency measures wrt. 18 rationality

postulates is stated. The necessary preliminaries about

the logical context are given in Section 2, the definitions

of the considered inconsistency measures can be found

in Section 3, and the considered rationality postulates

are presented in Section 4. An overview on the results

is given in Section 5 and a final discussion concludes

this paper in Section 6.

2 Preliminaries

Let At be some fixed propositional signature, i. e., a

(possibly infinite) set of propositions, and let L(At) be

the corresponding propositional language constructed

using the usual connectives ∧ (and), ∨ (or), and ¬
(negation).

Definition 1 A knowledge base K is a finite set of for-

mulas K ⊆ L(At). Let K be the set of all knowledge

bases.

If X is a formula or a set of formulas we write At(X)

to denote the set of propositions appearing in X. Se-

mantics to a propositional language is given by inter-

pretations and an interpretation ω on At is a function

ω : At → {true, false}. Let Ω(At) denote the set of all

interpretations for At. An interpretation ω satisfies (or
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is a model of) an atom a ∈ At, denoted by ω |= a, if

and only if ω(a) = true. The satisfaction relation |= is

extended to formulas in the usual way.

For Φ ⊆ L(At) we also define ω |= Φ if and only

if ω |= φ for every φ ∈ Φ. Define furthermore the set

of models Mod(X) = {ω ∈ Ω(At) | ω |= X} for ev-

ery formula or set of formulas X. By abusing nota-

tion, a formula or set of formulas X1 entails another

formula or set of formulas X2, denoted by X1 |= X2,

if Mod(X1) ⊆ Mod(X2). Two formulas or sets of for-

mulas X1, X2 are equivalent, denoted by X1 ≡ X2, if

Mod(X1) = Mod(X2). Furthermore, two sets of formu-

las X1, X2 are semi-extensionally equivalent if there is

a bijection s : X1 → X2 such that for all α ∈ X1 we

have α ≡ s(α) [43]. We denote this by X1 ≡s X2. If

Mod(X) = ∅ we also write X |=⊥ and say that X is

inconsistent.

3 Inconsistency Measures

Let R∞≥0 be the set of non-negative real values including

∞. Inconsistency measures are functions I : K → R∞≥0
that aim at assessing the severity of the inconsistency

in a knowledge base K. The basic idea is that the larger

the inconsistency in K the larger the value I(K). For

the remainder of the paper, we also denote I(K) as

the inconsistency value of K (wrt. I). Inconsistency is

a concept that is not easily quantified and there have

been a couple of proposals for inconsistency measures

so far, in particular for classical propositional logic, see

e. g. [2,32,19,17] for some recent works. Here, we select

a representative selection of 15 inconsistency measures

from the literature in order to conduct our evaluation,

taken from [15,16,10,24,47,11,34,21,49,8]. We briefly

introduce these measures in this section for the sake of

completeness, but we refer for a detailed explanation to

the corresponding original papers.

The formal definitions of the considered inconsis-

tency measures can be found in Figure 1 while the nec-

essary notation for understanding these measures fol-

lows below.

The measure Id(K) [15] is usually referred to as a

baseline for inconsistency measures as it only distin-

guishes between consistent and inconsistent knowledge

bases.

The measures IMI(K) [15], IMIC(K) [15], Ip [10], and

Imv [49] are defined using minimal inconsistent subsets.

A set M ⊆ K is called minimal inconsistent subset (MI)

Id(K) =

{
1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

IMIC(K) =
∑

M∈MI(K)

1

|M |

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

Ic(K) = min{|υ−1(B)| | υ |=3 K}

Imc(K) = |MC(K)|+ |SC(K)| − 1

Ip(K) = |
⋃

M∈MI(K)

M |

Ihs(K) = min{|H| | H is a hitting set of K} − 1

IΣdalal(K) = min{
∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

Imax
dalal(K) = min{max

α∈K
dd(Mod(α), ω) | ω ∈ Ω(At)}

Ihitdalal(K) = min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

IDf
(K) = 1−Π|K|i=1(1−Ri(K)/i)

IPm(K) =
∑
a∈At

|PKm(a)| · |PKm(¬a)|

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

Fig. 1 Definitions of the considered inconsistency measures

of K if M |=⊥ and there is no M ′ ⊂ M with M ′ |=⊥.

Let MI(K) be the set of all MIs of K.

For Imc [10], let furthermore MC(K) be the set of

maximal consistent subsets of K, i. e., MC(K) = {K′ ⊆
K | K′ 6|=⊥ ∧∀K′′ ) K′ : K′′ |=⊥}, and let SC(K) be the

set of self-contradictory formulas of K, i. e., SC(K) =

{φ ∈ K | φ |=⊥}. Note also that Inc [8] uses the concept

of maximal consistency in its formal definition, but in

a slightly different manner.

The measure Iη [24] considers probability functions

P of the form P : Ω(At)→ [0, 1] with
∑
ω∈Ω(At) P (ω) =

1. Let P(At) be the set of all those probability functions

and for a given probability function P ∈ P(At) define

the probability of an arbitrary formula φ via P (φ) =∑
ω|=φ P (ω).

The measure Ic [10] utilizes a paraconsistent seman-

tics using three-valued interpretations for propositional
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logic [40].1 A three-valued interpretation υ on At is a

function υ : At → {T, F,B} where the values T and F

correspond to the classical true and false, respectively.

The additional truth value B stands for both and is

meant to represent a conflicting truth value for a propo-

sition. Taking into account the truth order ≺ defined via

T ≺ B ≺ F , an interpretation υ is extended to arbi-

trary formulas via υ(φ1 ∧ φ2) = min≺(υ(φ1), υ(φ2)),

υ(φ1 ∨ φ2) = max≺(υ(φ1), υ(φ2)), and υ(¬T ) = F ,

υ(¬F ) = T , υ(¬B) = B. An interpretation υ satis-

fies a formula α, denoted by υ |=3 α if either υ(α) = T

or υ(α) = B.

For Ihs [47], a subset H ⊆ Ω(At) is called a hitting

set of K if for every φ ∈ K there is ω ∈ H with ω |= φ.

The Dalal distance dd is a distance function for

interpretations in Ω(At) and is defined as d(ω, ω′) =

|{a ∈ At | ω(a) 6= ω′(a)}| for all ω, ω′ ∈ Ω(At). If X ⊆
Ω(At) is a set of interpretations we define dd(X,ω) =

minω′∈X dd(ω′, ω) (if X = ∅ we define dd(X,ω) = ∞).

We consider the inconsistency measures IΣdalal, Imax
dalal,

and Ihitdalal from [11] but only for the Dalal distance.

Note that in [11] these measures were considered for

arbitrary distances and that we use a slightly different

but equivalent definition of these measures.

For every knowledge base K, i = 1, . . . , |K| define

MI(i)(K) = {M ∈ MI(K) | |M | = i} and CN(i)(K) =

{C ⊆ K | |C| = i∧C 6|=⊥}. Furthermore define Ri(K) =

0 if |MI(i)(K)|+ |CN(i)(K)| = 0 and otherwise Ri(K) =

|MI(i)(K)|/(|MI(i)(K)|+ |CN(i)(K)|). Note that the def-

inition of IDf
in Table 1 is only one instance of the

family studied in [34], other variants can be obtained

by different ways of aggregating the values Ri(K).

Considering IPm
[21], for an atom x ∈ At or a

negated atom x = ¬y (y ∈ At) a minimal proof in K
is a set π ⊆ K such that (1) x appears as a subformula

in some α ∈ π, (2) π |= x, and (3) π is minimal wrt.

set inclusion (note that π is not necessarily consistent).

Let PKm(x) be the set of all minimal proofs of x in K.

Note that the definition of IPm in Figure 1 is not the

original definition but a characterization also provided

in [21].

We conclude this section with a small example il-

lustrating the behavior of the considered inconsistency

measures.

1 Note that slightly different formalizations of this idea have
been given in [16,30,29].

Example 1 Let K1 and K2 be given as

K1 = {a, b ∨ c,¬a ∧ ¬b, d}
K2 = {a,¬a, b,¬b}

Then

Id(K1) = 1 Id(K2) = 1

IMI(K1) = 1 IMI(K2) = 2

IMIC(K1) = 1/2 IMIC(K2) = 1

Iη(K1) = 1/2 Iη(K2) = 1/2

Ic(K1) = 1 Ic(K2) = 2

Imc(K1) = 1 Imc(K2) = 3

Ip(K1) = 2 Ip(K2) = 4

Ihs(K1) = 1 Ihs(K2) = 1

IΣdalal(K1) = 1 IΣdalal(K2) = 2

Imax
dalal(K1) = 1 Imax

dalal(K2) = 1

Ihitdalal(K1) = 1 Ihitdalal(K2) = 2

IDf
(K1) = 1/12 IDf

(K2) = 1/6

IPm
(K1) = 1 IPm

(K2) = 2

Imv(K1) = 1/2 Imv(K2) = 1

Inc(K1) = 3 Inc(K2) = 3

A web application for trying out all the discussed in-

consistency measures can be found on the website of

the Tweety project2, cf. [45].

4 Rationality Postulates

In the previous section, we recalled concrete approaches

to inconsistency measurement from the literature. How-

ever, the question is still open what these functions

should actually measure. In the classic-logical sense,

inconsistency is a binary concept. Either a knowledge

base is inconsistent or it is consistent. Inconsistency

measures address the challenge to further distinguish

inconsistent knowledge bases in a similar manner as in-

formation measures [41,28] address the issue of further

distinguishing consistent knowledge bases, in particu-

lar through measuring the information content. While

information content can be formalized in a way that is

(mostly) agreed upon in the community, the concept

of inconsistency has no such generally accepted formal-

ization. Instead, rationality postulates have been pro-

posed to give general guidelines on how inconsistency

2 http://tweetyproject.org/w/incmes/
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measures should behave in certain scenarios. In the fol-

lowing, we recall 18 rationality postulates that have

been proposed in the literature [14,42,16,33,34,43,2].

We will refrain from discussing the actual rationality of

these postulates and only recall the original motivation

for stating these postulates as desirable properties.

The first set of rationality postulates has been pro-

posed in [14] in order to provide a definition of a basic

inconsistency measure. In order to state these postu-

lates we need one further definition.

Definition 2 A formula α ∈ K is called free formula if

α /∈
⋃

MI(K). Let Free(K) be the set of all free formulas

of K.

In other words, a free formula is basically a formula

that is not directly participating in any derivation of

a contradiction. Using this definition and the concepts

already introduced before, the first five rationality pos-

tulates of [14] can be stated as follows. For the remain-

der of this section, let I be any function I : K→ R∞≥0,

K,K′ ∈ K, and α, β ∈ L(At).

Consistency (CO) I(K) = 0 if and only if K is consis-

tent

Normalization (NO) 0 ≤ I(K) ≤ 1

Monotony (MO) If K ⊆ K′ then I(K) ≤ I(K′)
Free-formula independence (IN) If α ∈ Free(K) then

I(K) = I(K \ {α})
Dominance (DO) If α 6|=⊥ and α |= β then I(K ∪
{α}) ≥ I(K ∪ {β})

The first postulate, CO, requires that consistent knowl-

edge bases receive the minimal inconsistency value zero

and every inconsistent knowledge base has a strictly

positive inconsistency value. This postulate is actually

the only generally accepted postulate and describes the

minimal requirement for an inconsistency measure. An

inconsistency measure I that satisfies CO does not dis-

tinguish between consistent knowledge bases and can,

at least, distinguish inconsistent knowledge bases from

consistent ones.

The postulate NO states that the inconsistency value

is always in the unit interval, thus allowing inconsis-

tency values to be comparable even if knowledge bases

are of different sizes. In later works, this postulate is

usually regarded as an optional feature.

MO requires that adding formulas to the knowledge

base cannot decrease the inconsistency value. Besides

CO this is the least disputed postulate and most incon-

sistency measures do satisfy it (the Section 5).

IN states that removing free formulas from the knowl-

edge base should not change the inconsistency value.

The motivation here is that free formulas do not par-

ticipate in inconsistencies and should not contribute to

having a certain inconsistency value.

DO says that substituting a consistent formula α by

a weaker formula β should not increase the inconsis-

tency value. Here, as β carries less information than α

there should be less opportunities for inconsistencies to

occur.

The set of postulates was extended in [42] for the

case of inconsistency measurement in probabilistic log-

ics. However, we can state these postulates also for

propositional logic.

Definition 3 A formula α ∈ K is called safe formula if

it is consistent and At(α)∩At(K\{α}) = ∅. Let Safe(K)

be the set of all safe formulas of K.

A formula is safe, if its signature is disjoint from the

signature of the rest of the knowledge base, cf. the con-

cept of language splitting in belief revision [37,26]. Ev-

ery safe formula is also a free formula [42].

Safe-formula independence (SI) If α ∈ Safe(K) then

I(K) = I(K \ {α})
Super-Additivity (SA) If K ∩ K′ = ∅ then I(K ∪ K′) ≥
I(K) + I(K′)

Penalty (PY) If α /∈ Free(K) then I(K) > I(K \ {α})

The postulate SI requires that removing isolated formu-

las from a knowledge base cannot change the inconsis-

tency value. This postulate is a weakening of IN, i. e., if

a measure I satisfies IN it also satisfies SI, cf. [42] and

Theorem 1.

SA is a strengthening of MO [42] and requires that

the sum of the inconsistency values of two disjoint knowl-

edge bases is not larger than the inconsistency value of

the joint knowledge base.

PY is the complementary postulate to IN and states

that adding a formula participating in inconsistency

must have a positive impact on the inconsistency value.

The following two postulates have been first used in

[16]:

MI-separability (MI) If MI(K1∪K2) = MI(K1)∪MI(K2)

and MI(K1)∩MI(K2) = ∅ then I(K1∪K2) = I(K1)+

I(K2)

MI-normalization (MN) If M ∈ MI(K) then I(M) = 1

MI focuses particularly on the role of minimal inconsis-

tent subsets in the determination of the inconsistency
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value. It states that the sum of the inconsistency values

of two knowledge bases that have “non-interfering” sets

of minimal inconsistent subsets should be the same as

the inconsistency value of their union.

MN demands that a minimal inconsistent subset is

the atomic unit for measuring inconsistency by requir-

ing that the inconsistency value of any minimal incon-

sistent subset is one.

The following postulates have been proposed in [33]

to further define the role of minimal inconsistent sub-

sets in measuring inconsistency:

Attenuation (AT) M,M ′ ∈ MI(K) and I(M) < I(M ′)

implies |M | > |M ′|
Equal Conflict (EC) M,M ′ ∈ MI(K) and I(M) = I(M ′)

implies |M | = |M ′|
Almost Consistency (AC) LetM1,M2, . . . be a sequence

of minimal inconsistent sets Mi with limi→∞ |Mi| =
∞, then limi→∞ I(Mi) = 0

The postulate AT states that minimal inconsistent sets

of smaller size should have a larger inconsistency value.

The motivation of this postulate stems from the lottery

paradox 3 [27].

The postulate EC is the counterpart of AT and re-

quires minimal inconsistent subsets having the same in-

consistency value also to have the same size.

AC considers the inconsistency values on arbitrar-

ily large minimal inconsistent subsets in the limit and

requires this to be zero.

The following postulates are from [34].

Contradiction (CD) I(K) = 1 if and only if for all ∅ 6=
K′ ⊆ K, K′ |=⊥

Free Formula Dilution (FD) If α ∈ Free(K) then I(K) ≥
I(K \ {α})

CD is meant as an extension of NO and states that

a knowledge base is maximally inconsistent if all non-

empty subsets are inconsistent. Note that CD only makes

sense if NO is satisfied as well. We do not consider here

the property Monotony w.r.t. Conflict Ratio from [34]

as it is too specifically tailored for the measure IDf
.

The following property has been first mentioned in

[43]:

3 Consider a lottery of n tickets and let ai be the proposi-
tion that ticket i, i = 1, . . . , n will win. It is known that exactly
one ticket will win (a1∨. . .∨an) but each ticket owner assumes
that his ticket will not win (¬ai, i = 1, . . . , n). For n = 1000
it is reasonable for each ticket owner to believe that he will
not win but for e. g., n = 2 it is not. Therefore larger minimal
inconsistent subsets can be regarded less inconsistent than
smaller ones.

Irrelevance of Syntax (SY) If K1 ≡s K2 then I(K1) =

I(K2)

SY states that knowledge bases with pairwise equivalent

formulas should receive the same inconsistency value.

In [2] a series of further postulates have been dis-

cussed. For our current study, we only consider the fol-

lowing two:

Exchange (EX) If K′ 6|=⊥ and K′ ≡ K′′ then I(K ∪
K′) = I(K ∪ K′′)

Adjunction Invariance (AI) I(K∪{α, β}) = I(K∪{α∧
β})

EX is similar in spirit to SY and demands that exchang-

ing consistent parts of the knowledge base with equiv-

alent ones should not change the inconsistency value.

AI demands that the set notation of knowledge bases

should be equivalent to the conjunction of its formulas

in terms of inconsistency values. In difference to EX
note that AI has no precondition on the consistency of

the considered formulas.

The rationality postulates presented so far are not

independent. The following theorem shows some gen-

eral relationships (a statement “A implies B” is meant

to be read as “if a measure satisfies A then it satisfies

B”; a statement “A1, . . . , An are incompatible” means

“there is no measure satisfying A1, . . . , An at the same

time”).

Theorem 1

1. IN implies SI
2. IN implies FD
3. SA implies MO
4. MN and AC are incompatible

5. MN and CD are incompatible

6. MO implies FD
7. MN, MI, and NO are incompatible

8. MN, SA, and NO are incompatible

The proof of the above theorem is given in the online

appendix4, see also [2] for some more detailed discus-

sions.

5 Compliance of Inconsistency Measures

Table 1 gives the complete picture on which inconsis-

tency measure satisfies (3) and violates (7) the pre-

viously discussed rationality postulates. Some of these

4 http://www.mthimm.de/misc/mt_ratposim_appendix.pdf
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I CO NO MO IN DO SI SA PY MI MN AT EC AC CD FD SY EX AI

Id 3[16] 3 3[16] 3[16] 3[16] 3[43] 7[43] 7[43] 7[43] 3 3 7 7 7 3 3[43] 3 3
IMI 3[15] 7 3[15] 3[15] 7[34] 3[43] 3[43] 3[43] 3[16] 3[16] 3 7 7 7 3 3[10] 7 7
IMIC 3[10] 7[43] 3[10] 3[10] 7 3[43] 3[43] 3[43] 3[43] 7 3 3 3 7 3 3[10] 7 7
Iη 3[24] 3[24] 3[43] 3[43] 3 3[43] 7[43] 7[43] 7[43] 7 3 3 3 7 3 3[43] 7 7
Ic 3[10] 7 3[10] 3[10] 3 3 7 7 7 7 7 7 7 7 3 7[10] 3 3
Imc 3[10] 7 3[10] 3[10] 7 3 7 7 7[18] 7 7 7 7 7 3 3[10] 7 7
Ip 3[10] 7 3[10] 3[10] 7 3 3 3 7 7 7 3 7 7 3 3[10] 7 7
Ihs 3[47] 7 3[47] 3[47] 3[47] 3[47] 7[47] 7 7[47] 7 3 7 7 7 3 3[47] 7 7
IΣdalal 3[11] 7 3[11] 3[11] 3[11] 3 3 7 7 7 7 7 7 7 3 3 7 7
Imax
dalal 3[11] 7 3[11] 3[11] 3[11] 3 7 7 7 7 7 7 7 7 3 3 7 7
Ihitdalal 3[11] 7 3[11] 3[11] 3[11] 3 3 7 7 3 3 7 7 7 3 3 7 7
IDf

3[34] 3[34] 7 7 7 7 7 7 7 7 3[34] 3 3[34] 3[34] 3[34] 3 7 7

IPm 3[21] 7 3[21] 7[21] 7[21] 3 3 3 7 7 7 7 7 7 3 7 7 7
Imv 3[49] 7 7 7 7 7 7 7 3 3 7 7 7 7 7 7 7
Inc 3 7 3 3 3 3 3 3 7 3 3 7 7 7 3 3 7 7

Table 1 Compliance of inconsistency measures with rationality postulates; previous results are indicated by a super-scripted
reference of the original work (some of the results have been shown in multiple publications, only the first occurrence is cited)

results have been shown before in [24,15,16,34,10,49,

43,11,21,18,47]5, marked correspondingly in Table 1.

The proofs and counterexamples of the remaining state-

ments are all given in the online appendix4. Note that

in [49] it has been shown that Imv satisfies restricted

versions of MO and IN where only formulas are consid-

ered that do not use fresh propositions.

The only rationality postulate where all considered

measures agree upon is CO, which is not surprising as

it captures the minimal requirement for any inconsis-

tency measure. Most measures also satisfy MO, which

is also the least disputed in the literature. The only

cases where MO fails is usually when NO is satisfied, cf.

IDf
and Imv. However, note that MO and NO are not

generally incompatible as e. g. Iη satisfies both. Some

other postulates are violated by most of the considered
inconsistency measures, in particular if they address a

very specific feature. For example, CD is motivated by

the measure IDf
—which is also the only one satisfying

it—and can be seen as the counterpart to CO as it de-

scribes a concept of maximal inconsistency. Of course,

requiring that a maximally inconsistent knowledge base

receives the maximal possible inconsistency value is a

desirable property. The specific instance of this require-

ment in CD, i. e., that maximal inconsistency is defined

by not having non-empty consistent subsets and that

the maximal value is 1, is very specific to IDf
. The

value 1 only makes sense when the measure is normal-

5 Note that proofs of [43] are for propositional probabilistic
logic. As this is a generalization of propositional logic, the
results apply here as well.

ized, so that 1 is indeed the maximal possible value.

Moreover, also the definition of maximal inconsistency

requires some more investigation.

One important thing to note from the results shown

in Table 1, is that there are no two inconsistency mea-

sures that are equivalent in terms of these postulates.

More precisely, for every pair of inconsistency measures

I, I ′ discussed in this paper there is always at least one

postulate which is satisfied by I and violated by I ′ (or

vice versa). A simple corollary of this is, that all con-

sidered inconsistency measures are different from each

other. That is, for every pair of measures I, I ′ we can

find knowledge bases K1,K2 such that I(K1) < I(K2)

and I ′(K1) ≥ I ′(K2) (or vice versa).

It can also be seen that satisfaction of many ratio-

nality postulates is not a sufficient criterion for evalu-

ating an inconsistency measure, as the drastic inconsis-

tency measure already satisfies 12 of the 18 considered

postulates—which is also the maximal number of pos-

tulates satisfied by any measure—but should not be

seen as a meaningful inconsistency measure. Moreover,

the drastic inconsistency measure is also the only mea-

sure besides Ic satisfying EX and AI, which have been

proposed in [2] as a more meaningful alternative to the

existing postulates. These observations call for more in-

vestigations in rationality postulates for inconsistency

measurement, as the existing ones are obviously not

able to sufficiently assess the quality of a measure. One

particular approach to complement rationality postu-

lates in this regard is to analyze the expressivity of in-

consistency measures, i. e., the number of different in-



8 Matthias Thimm

consistency values that can be attained on some class

of knowledge bases. See [46] for a recent discussion on

this topic.

6 Conclusion

In this paper, we provided a comprehensive evaluation

of recent approaches to inconsistency measures wrt.

several rationality postulates from the literature. It there-

fore extends previous partial investigations, serves as

an overview of the state-of-the-art, and as collection of

various technical results on the compliance of rational-

ity postulates (which, due to space limitations, can be

found in the online appendix4).

Our investigation on compliance is comprehensive

but, of course, not complete. In particular, we did not

yet consider the measures of [18–20,1] and, for exam-

ple, the property weak dominance from [19]. There are

variants of the inconsistency measure Ic which are also

based on multi-valued interpretations, see e. g. [16,30,

29].

Our investigation shows that, besides the postulate

CO, there is no common agreement on the variety of ra-

tionality postulates. This calls for both, a deeper inves-

tigation of rationality postulates and the development

of new measures satisfying them. Furthermore, besides

the satisfaction of rationality postulates, other dimen-

sions for evaluating inconsistency measures should also

be taken into account such as the aforementioned ex-

pressivity [46] as well as computational complexity [48].
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