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Abstract

We consider the problem of reasoning under uncertainty in the presence of incon-
sistencies. Our knowledge bases consist of linear probabilistic constraints that, in
particular, generalize many probabilistic-logical knowledge representation form-
alisms. We first generalize classical probabilistic models to inconsistent know-
ledge bases by considering a notion of minimal violation of knowledge bases.
Subsequently, we use these generalized models to extend two classical probab-
ilistic reasoning problems (the probabilistic entailment problem and the model
selection problem) to inconsistent knowledge bases. We show that our approach
satisfies several desirable properties and discuss some of its computational prop-
erties.
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1. Introduction

One of the main challenges in Knowledge Representation and Reasoning re-
search is the handling of uncertain and inconsistent information. Unreliable sensor
data, distorted communication channels, and other noisy data sources demand spe-
cial treatment of information in order to produce reliable and robust results. Ap-
proaches for representing and reasoning with uncertainty can be roughly divided
into formalisms for qualitative uncertainty and formalisms for quantitative un-

certainty. The former comprise the large class of non-monotonic logics (Gabbay

Preprint submitted to International Journal of Approximate Reasoning 6th June 2017

https://www.researchgate.net/profile/Nico_Potyka?el=1_x_100&enrichId=rgreq-3b9af1eac361f698de2e8786a600153a-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1ODE5NTtBUzo1MDIxNzg5Mjg2Mjc3MTJAMTQ5Njc0MDE5NDU1NQ==


et al., 1994), i. e., logics that do not generally satisfy the property of monotonicity

of classical logics (conclusions are preserved under the addition of new inform-
ation). In order to allow for uncertain reasoning, these formalisms often include
non-monotonic rules that do not necessarily hold in all cases. The archetype of
such a rule is the default rule from default logic (Reiter, 1980). Some further
examples of formalisms following this line are, e. g., answer set programming
(Gelfond and Leone, 2002), conditional logics (Nute and Cross, 2002), defeasible
logics (Nute, 1994), and computational models of argumentation (Baroni et al.,
2011). In contrast, formalisms for quantitative uncertainty allow a finer-grained
representation of uncertainty. For example, in probabilistic logics (Nilsson, 1986;
Paris, 1994; Lukasiewicz and Kern-Isberner, 1999; Hansen and Jaumard, 2000),
classical formulas in a knowledge base can be annotated with probabilities or in-
tervals of probabilities and inferences can be drawn with probabilistic degrees of
certainty.

In many situations, our knowledge is not only uncertain, but also inconsistent.
The notion of inconsistency refers (usually) to multiple pieces of information and
represents a conflict among those, i. e., they cannot hold at the same time. For in-
stance, the two statements “John is on vacation in California” and “John is at home
in New York” represent inconsistent information and in order to draw meaning-
ful conclusions from a knowledge base containing these statements, this conflict
has to be resolved or dealt with. In applications such as decision-support sys-
tems, knowledge bases are usually created by adding the formalized knowledge
of different experts and different data sources and conflicts are hardly avoidable.

Several approaches have been developed for dealing with inconsistencies. Some
of the qualitative formalisms mentioned before, such as computational models of
argumentation, can also be applied for this purpose. Other examples include para-
consistent logics (Priest, 1991; Béziau et al., 2007; Arieli et al., 2011) which are
formalisms based on classical logic that allow reasoning with inconsistent inform-
ation. Approaches to inconsistency measurement (Grant and Hunter, 2006) can
be used to analyze the severity of inconsistencies and to provide help in consol-
idating them. The fields of belief revision (Hansson, 2001) and belief merging
(Cholvy and Hunter, 1997; Konieczny and Pérez, 1998) deal with the particular
case of inconsistencies in dynamic settings. Usually, when new observations are
made in a dynamic environment these observations can contradict with previously
held beliefs and old beliefs have to be forgotten. There are also non-classical ap-
proaches to belief revision and belief merging such as answer set programming,
cf. e. g. (Slota and Leite, 2012) or various probabilistic approaches (Kern-Isberner
and Rödder, 2003; Adamcik, 2014; Wilmers, 2015).
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The notions of uncertainty and inconsistency are orthogonal to each other. For
example, a piece of information may be uncertain such as “Tomorrow it will rain
with probability 0.9”. If this is the only belief an agent possesses, it is consistent
(although vague). Multiple pieces of information may be inconsistent such as
“The bird Tweety flies” and “the bird Tweety does not fly”. While these two
statements are contradictory, each one represents a certain statement of its own. Of
course, multiple pieces of information can also be both uncertain and inconsistent
such as “Tomorrow it will rain with probability 0.9” and “tomorrow it will rain
with probability 0.6”. These beliefs are individually uncertain and taken together
also inconsistent.

In this paper, our knowledge may be both uncertain and inconsistent. We
represent uncertain knowledge by linear probabilistic constraints that in partic-
ular cover many probabilistic logical formalisms as considered in e. g. (Nilsson,
1986; Lukasiewicz, 1999; Fisseler, 2008; Kern-Isberner and Thimm, 2010). In-
consistencies occur in this framework when multiple constraints cannot be satis-
fied jointly by a probability distribution. To deal with inconsistencies, we con-
sider probability distributions that in some sense minimally violate the knowledge
rather than satisfy it. Based on this idea, we generalize two fundamental reasoning
problems from probabilistic logics to inconsistent knowledge bases. These gener-
alizations have the same solutions as the classical problem if the knowledge base
is consistent and satisfy several reasonable properties in the general case. In par-
ticular, they feature two particularly interesting robustness properties. First, they
are robust with respect to inconsistent knowledge that is independent of the query
if we measure violation appropriately (we will make this precise later). Second,
they behave continuously in the sense that if a knowledge base is close to a con-
sistent knowledge base, then the query results will be close to the results under
the consistent knowledge base. In this sense, minor inconsistencies in a know-
ledge base cannot yield major changes in the derived probabilities. We call these
properties Independence and Consistent Blaschke Continuity and will make them
precise in Sections 4 and 5. As we explain in Section 6, solving the generalized
problems is barely harder than solving the classical problems in the sense that they
belong to the same class of optimization problems and their size does only grow
by a constant factor.

In this paper, we generalize, unify and extend the approach and results of
our previous works (Potyka, 2014; Potyka and Thimm, 2014, 2015) that were in
particular restricted to propositional probabilistic logics with point probabilities.
The main contributions of this work are
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1. We generalize the notion of models of a linear probabilistic knowledge base
in the presence of inconsistencies (Section 3).

2. We generalize the classical probabilistic entailment problem in our frame-
work and investigate its properties (Section 4).

3. We generalize the classical model selection problem in our framework and
investigate its properties (Section 5).

Necessary preliminaries are presented in Section 2. We discuss related work in
Section 7, and conclude with a summary in Section 8. AppendixA summarizes
the notation used in the paper.

2. Preliminaries

2.1. Linear Probabilistic Knowledge Bases

We consider knowledge bases that represent probabilistic-logical relationships
by means of a finite set of random variables X = {X1, . . . , Xn

}. For instance,
in propositional probabilistic logics, X corresponds to the propositional variables
of the language. In relational probabilistic logics, X corresponds to the ground
atoms of the language. We will give some more detailed examples as we move
on. Each X 2 X has a finite domain dom(X) = {x1, . . . , xk

} of values it can
take. An atom over X is an expression of the form X = x, where X 2 X and
x 2 dom(X). A formula over X is either an atom or a composite formula that is
built up by connecting atoms with the logical junctors ¬,^,_ in the usual way.
We denote the set of all formulas over X by L(X ). If dom(X) = {0, 1}, we
call X a boolean variable and abbreviate X = 1 by X and X = 0 by ¬X . We
will use this notation in particular if X is a relational atom. A possible world

! over X is a variable assignment, that is, a function that maps each variable to
an element from its domain. In propositional probabilistic logics, ! corresponds
to the possible truth assignments to the variables in the language. In relational
logics, ! corresponds to the possible Herbrand interpretations (truth assignments
to the ground atoms of the language). We will assume that the variables in X are
ordered in some way so that we can write variable assignments more concisely. If
! assigns x

i

2 dom(X
i

) to X
i

for 1  i  n, we write ! = (x1, . . . , xn

). We
denote the set of all possible worlds by ⌦. We say that ! satisfies the atom X=x
iff !(X) = x. Satisfaction of composite formulas is defined in the usual recursive
way. If � is a formula and ! satisfies �, we write ! |= �, and call ! a model of �.
The set of all models of � is denoted by Mod(�).
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In order to talk about the probability of formulas, we consider probability dis-
tributions P : ⌦ ! [0, 1] over the finite set of possible worlds (recall that a finite
probability distribution is a non-negative function that satisfies

P
!2⌦ P (!) = 1).

We overload the symbol P (·) to also denote the induced probability measure over
L(X ). More formally, for a formula �, we let P (�) =

P
!2Mod(�) P (!). We will

consider knowledge bases consisting of linear probabilistic constraints.

Definition 1 (Linear Probabilistic Constraint, Satisfaction). A linear probabilistic

constraint c over X is an expression of the form

c : h0 + h1⇡(�1) + . . .+ h
m

⇡(�
m

)  0, (1)

where �1, . . . ,�m

are formulas over X , h0, . . . , hm

2 Q are rational numbers, and
⇡ is a meta-logical symbol.

A probability distribution P (over the possible worlds over X ) satisfies c, writ-
ten as P |= c iff

h0 + h1P (�1) + . . .+ h
m

P (�
m

)  0. (2)

Linear constraints of the above form cover in particular classical probabilistic
logic (Nilsson, 1986) and several relational probabilistic logics as considered in
(Lukasiewicz, 1999; Fisseler, 2008; Kern-Isberner and Thimm, 2010) for instance.

Example 1 (Basic Constraints). The simple probabilistic constraint “The probab-
ility of � is at most p” for some formula � and x 2 [0, 1] can be represented as a
linear constraint via

c1 : � p+ ⇡(�)  0

Similarly, the constraint “The probability of � is at least p” can be represented as

c2 : p� ⇡(�)  0

and “The probability of � is exactly p” by taking both c1 and c2 into account.
Furthermore, the constraint “The conditional probability of � given  is undefined
(that is,  has probability 0) or is at least p” can be represented as

c3 : p⇡( )� ⇡( ^ �)  0. (3)

Note that this equation implies P (� |  ) � p for any P with P |= c3 and
P ( ) > 0. We cannot express the condition P ( ) > 0 in our framework. How-
ever, whether or not we enforce P ( ) > 0, often does not make any signific-
ant difference for the reasoning problems that we are interested in, see (Potyka,
2016) for a thorough discussion. For notational convenience we abbreviate c3 with
⇡(� |  ) � p and write analogously ⇡(� |  )  p and ⇡(� |  ) = p.
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In the following, it will often be convenient to consider indicator functions for
formulas � over X . The indicator function 1

�

: ⌦ ! {0, 1} corresponding to �
yields 1

�

(!) = 1 if and only if ! |= � and 0 otherwise. Using indicator functions,
we can rewrite the satisfaction condition of constraints as follows.

Lemma 1. P |= c iff X

!2⌦

a
!

P (!)  0,

where a
!

= h0 +
P

m

j=1 1�j(!)hj

.

Proof. P |= c iff

0 � h0 + h1P (�1) + . . .+ h
m

P (�
m

)

= h0

X

!2⌦

P (!) + h1

X

!2Mod(�1)

P (!) + . . .+ h
m

X

!2Mod(�m)

P (!)

= h0

X

!2⌦

P (!) + h1

X

!2⌦

1

�1(!)P (!) + . . .+ h
m

X

!2⌦

1

�m(!)P (!)

=

X

!2⌦

P (!)(h0 +

mX

j=1

1

�j(!)hj

).

Let us fix an arbitrary order of the possible worlds in ⌦. Then we can identify
a probability distribution P with the |⌦|-dimensional column vector whose i-th
component contains the probability of the i-th world P (!

i

). For a linear probabil-
istic constraint c, let r

c

denote the row vector whose i-th component contains a
!i

as in Lemma 1. Then Lemma 1 says that P |= c iff r
c

P  0.

Definition 2 (Linear Probabilistic Knowledge Base, Satisfaction, Constraint Mat-
rix). A linear probabilistic knowledge base (or knowledge base for short) K =

{c1, . . . , cm} is a finite set of linear probabilistic constraints. A probability distri-
bution P satisfies K, written as P |= K, iff P satisfies all c 2 K. The constraint

matrix corresponding to K is the m⇥ n matrix

AK =

0

@
r
c1

. . .
r
cm

1

A
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As before, we abbreviate the set of all models of K as Mod(K) = {P | P |=
K}. A knowledge base K is consistent if there is a probability distribution P with
P |= K, otherwise it is inconsistent.

The following corollary follows immediately from Lemma 1.

Corollary 1. P |= K iff AKP  0.

We conclude this part with an example that illustrates the expressivity of our
formalism.

Example 2 (Constraints from Relational Probabilistic Logics). Many relational
probabilistic logics are based on the idea of regarding relational formulas as tem-
plates for propositional formulas, see, e.g., (Lukasiewicz, 1999; Fisseler, 2008;
Loh et al., 2010). The general idea is to consider a finite set of constants Consts

and a finite set of predicate symbols Preds. Knowledge bases consist of rela-
tional probabilistic conditionals like (� |  )[l, u], where � and  are relational
formulas and l, u are probabilities such that l  u. The intuitive statement is that
the probability of � given that  holds is between l and u. A probability distri-
bution P over the Herbrand interpretations (or equivalently, a joint distribution
over the ground atoms regarded as random variables) of Consts and Preds satis-
fies the conditional (� |  )[l, u] if for all possible ground instances (�0 |  0

)[l, u]
of (� |  )[l, u] over Consts, we have that either P ( 0

) = 0 or P (�0 |  0
) 2 [l, u]

(note that this translates to two linear constraints of the form (3) for each ground
conditional). If our relational conditional is (Flies(X) | Bird(X))[0.8, 1] for in-
stance and Consts = {a, b}, then we have to check the condition for the ground
conditionals (Flies(a) | Bird(a))[0.8, 1] and (Flies(b) | Bird(b))[0.8, 1]. This
basic semantics can be refined by taking constraints over the possible ground in-
stances and different grounding operators into account (Fisseler, 2008; Loh et al.,
2010). We will use this semantics in some examples later and refer to it as the
grounding semantics. Note that for grounding semantics, each conditional in the
logical knowledge base yields several linear probabilistic constraints (as explained
before, the number of constraints corresponding to the conditional is twice the
number of its ground instances).

Grounding semantics are quite restrictive in the sense that they demand that
a probability interval must hold for all ground instances. However, sometimes it
is more natural to demand only that some algebraic combination of the probab-
ilities of all ground instances lie in this interval. Two semantics that follow this
idea have been proposed in (Kern-Isberner and Thimm, 2010). While a discussion
of these semantics is out of the scope of this paper, we note that the aggregating
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semantics from (Kern-Isberner and Thimm, 2010) also yields linear probabilistic
constraints, see the proof of (Potyka, 2015b), Proposition 3.9 for a detailed deriv-
ation. Interestingly, each conditional under aggregating semantics yields only one
linear probabilistic constraint. Even though these constraints contain stronger cor-
relations between ground atoms than the corresponding constraints under ground-
ing semantics, computing reasoning results under aggregating semantics is often
significantly faster than computing the corresponding results under grounding se-
mantics. Actually, the aggregating semantics can be used to approximate reason-
ing results under grounding semantics, see (Potyka, 2016) for a detailed discus-
sion.

2.2. Reasoning over Linear Probabilistic Knowledge Bases: Entailment and Model

Selection

Given a consistent knowledge base K, we are interested in deriving meaning-
ful probabilities for conditional queries. A (conditional) query is an expression of
the form

(� |  ),

where �, 2 L(X ) are formulas over X . There are two major approaches to
derive meaningful probabilities for a query (� |  ) from the models of a consist-
ent knowledge base K. The first approach is to derive upper and lower bounds on
the conditional probability of � given  with respect to all models of K (Nilsson,
1986; Hansen and Jaumard, 2000). This approach is often referred to as the prob-

abilistic entailment problem. The second approach is a two-stage process. One
selects a best model that satisfies the knowledge base and then uses this model
to compute the conditional probability of � given  (Paris, 1994; Kern-Isberner,
2001). We refer to the first subproblem of the second approach as the probab-

ilistic model selection problem and to the second as the probabilistic inference

problem. We will be mainly concerned with the first stage here, i. e., with the
probabilistic model selection problem. The probabilistic inference problem can
always be solved naively (even though not very efficiently) by iterating over the
probabilities of all worlds to compute the conditional probability. We now give a
formal definition of the two reasoning problems that we are interested in.

Definition 3 (Probabilistic Entailment Problem, Entailment relation |=pe). Given
a consistent knowledge base K over X and a query (� |  ),�, 2 L(X ), the
probabilistic entailment problem is to compute lower and upper bounds on the
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probability of � given  among the models of K, that is, to solve the optimization
problems

min

P2Mod(K)
/ max

P2Mod(K)

P (� ^  )
P ( )

,

subject to P ( ) > 0.

If the probabilistic entailment problem can be solved, and the minimum and max-
imum are l and u, we write K |=pe

(� |  )[l, u].

Definition 4 (Probabilistic Model Selection Problem). Given a consistent know-
ledge base K over X and a cost function C mapping probability distributions to R,
the probabilistic model selection problem is to compute a model of minimal cost,
that is, to solve the optimization problem

arg min

P2Mod(K)
C(P ).

The probabilistic entailment problem can be solved by fractional programming
techniques (Charnes and Cooper, 1962; Hailperin, 1986) if there is a P 2 Mod(K)

that satisfies P ( ) > 0. Since the model sets of linear probabilistic knowledge
bases are guaranteed to be compact and convex (due to linearity), the probabil-
istic model selection problem can be solved by convex programming techniques
whenever the cost function is strictly convex (concave) and continuous.

Example 3. We illustrate the probabilistic entailment problem by means of an
example from (Potyka et al., 2015). Suppose that we want to design an in-
telligent agent that has to watch some pets. Sometimes the pets attack each
other and our agent has to separate them. We consider a probabilistic condi-
tional knowledge base K under grounding semantics as explained in Example
2. We consider constants ({bully , sylvester , tweety} and the predicate symbols
{Bird ,Cat ,Dog ,Attacks ,LT} where Bird ,Cat ,Dog are unary predicates de-
noting whether a term is a bird, a cat, or a dog, respectively, Attacks and LT

are binary predicates denoting whether one animal attacks another and whether
one animal is larger than another animal, respectively. K contains the following
conditionals (all probabilities are point intervals, so we use the notation [p] rather

9

https://www.researchgate.net/publication/245588489_Boole''s_Logic_and_Probability_volume_85_of_Studies_in_Logic_and_the_Foundations_of_Mathematics?el=1_x_8&enrichId=rgreq-3b9af1eac361f698de2e8786a600153a-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1ODE5NTtBUzo1MDIxNzg5Mjg2Mjc3MTJAMTQ5Njc0MDE5NDU1NQ==
https://www.researchgate.net/publication/229492098_Programming_With_Linear_Fractional_Functionals?el=1_x_8&enrichId=rgreq-3b9af1eac361f698de2e8786a600153a-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1ODE5NTtBUzo1MDIxNzg5Mjg2Mjc3MTJAMTQ5Njc0MDE5NDU1NQ==


than [l, u] for probability intervals):

K = {(Bird(X) ^ Cat(X))[0], (Bird(X) ^ Dog(X))[0], (Cat(X) ^ Dog(X))[0],

(Attacks(X,X))[0], (LT (X, Y ) ^ LT (Y,X))[0],

(Bird(tweety))[1], (Cat(sylvester)))[1], (Dog(bully)))[1]},
(Attacks(X, Y ) | LT (Y,X))[0.1],

(LT (X, Y ) | Cat(X) ^ Bird(Y ))[0.9],

(Attacks(X, Y ) | Cat(X) ^ Bird(Y ))[0.8]}

The conditionals express that a bird cannot be a cat, a bird cannot be a dog and
a cat cannot be a dog. Furthermore, pets do not attack themselves and larger-
than is an asymmetric relation. We also know that tweety is a bird, sylvester
is a cat, and bully is a dog. We assume that it is unlikely that a pet attacks a
larger animal. Furthermore, we suppose that cats are usually larger than birds
and that cats like attacking birds. We have the following entailment results under
grounding semantics.

K |=pe

(Attacks(tweety , sylvester))[0.09, 0.19],

K |=pe

(Attacks(tweety , tweety))[0, 0],

K |=pe

(Attacks(tweety , bully))[0, 1],

K |=pe

(Attacks(sylvester , tweety))[0.8, 0.8].

3. Generalized Models

We know from Corollary 1 that P |= K iff AKP  0. Hence, if K is in-
consistent, the system of inequalities AKP  0 has no solution. Instead, we can
search for solutions that violate the inequalities in a minimal way (Potyka, 2014;
Bona and Finger, 2015). This can be done by replacing the constraints AKP  0

with AKP  ✏ for some non-negative vector ✏ and minimizing the size of ✏ with
respect to some vector norm.

Definition 5 (Vector norm). A vector norm k.k is a function k.k : Rn ! R which
satisfies

1. kxk � 0 and kxk = 0 iff x = 0.
2. kcxk = |c|kxk for all x 2 Rn and c 2 R.
3. kx+ yk  kxk+ kyk for all x, y 2 Rn.
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A vector norm is called continuous when it is a continuous function in the
usual sense. An important class of vector norms is the class of p-norms. A p-
norm is a vector norm k.k

p

: Rn ! R such that kxk
p

=

p
pP

n

i=1 |xi

|p, where
p � 1. We assume that p is a natural number here in order to avoid additional
computational issues. The most interesting special cases include the Manhattan
norm kxk1 =

P
n

i=1 |xi

|, the Euclidean norm kxk2 =

p
pP

n

i=1 x
2
i

, and the max-
imum norm (the limit for p ! 1) kxk1 = max{|x1|, . . . , |xn

|}. We will be in
particular interested in norms that can be derived from p-norms as explained in
the following definition.

Definition 6 (p-norm-related norm). Let p � 1 and let w = (w
i

) be a sequence of
positive real weights w

i

> 0. For all x 2 Rn the w-weighted p-norm is defined by

kxk
p,w

=

p

vuut
nX

i=1

w
i

|x
i

|p

The raised w-weighted p-norm is defined by

kxkp
p,w

=

nX

i=1

w
i

|x
i

|p

The w-weighted 1-norm is defined by

kxk1,w

= max{|w1 · x1|, · · · , |wn

· x
n

|}

A p-norm-related norm kxkw
p

is a norm that is either a w-weighted p-norm, a
raised w-weighted p-norm or, in the case p = 1, a w-weighted 1-norm.

Remark 1. Of course, in practice, one will usually define only a finite set of
weights for a given knowledge base. Note that this can formally be regarded as
the special case, where all subsequent entries in the weight series are 0.

Sometimes there are constraints in our knowledge base that have a special
status and should not be violated at all. Therefore, we introduce a second know-
ledge base that we call a set of integrity constraints. The set of integrity con-
straints is supposed to be consistent. Then, instead of minimizing ✏ with respect
to all probability distributions, we consider only those that satisfy our integrity
constraints (Potyka and Thimm, 2015).
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Definition 7 (Minimal Violation Value with respect to IC and k.k). Let K, IC be
knowledge bases with corresponding constraint matrices AK (of size m⇥n), AIC
and let IC be consistent. Let k.k be some continuous vector norm. The minimal

violation value of K with respect to k.k and integrity constraints IC is defined by

min

(x,✏)2Rn+m
k✏k (4)

subject to AK x  ✏,

AIC x  0,
nX

i=1

x
i

= 1,

x � 0,

✏ � 0.

We denote the minimal violation value by Ik.k
IC (K).

If IC and k.k are clear from context or not important for the discussion, we
will just omit the corresponding sub- and superscript to improve readability.

Proposition 1. Let K, IC be knowledge bases and let IC be consistent. Let k.k
be some continuous vector norm. Then the minimal violation value Ik.k

IC (K) is

well-defined and non-negative. In particular, Ik.k
IC (K) = 0 if and only if K [ IC is

consistent.

Proof. Let us first note that the feasible region of (4) is always non-empty. To see
this, consider an arbitrary P 0 2 Mod(IC) (note that P 0 exists by consistency of
IC) and let ✏0 2 Rm such that ✏

i

= |(AKP
0
)

i

| (✏
i

contains the magnitude of the i-th
component of the matrix-vector-product AKP

0). Then (P 0, ✏0) is a feasible solu-
tion. In particular, the feasible region is defined by linear equality and inequality
constraints and therefore convex and closed.

By non-negativity of vector norms, the objective function value of feasible
solutions is bounded from below by 0. Therefore, continuity of k.k implies the
existence of a feasible solution that takes the minimum. Hence, Ik.k

IC (K) is well-
defined.

Non-negativity of Ik.k
IC (K) follows from non-negativity of vector norms.

Definiteness of vector norms implies that Ik.k
IC (K) = 0 iff ✏ = 0. Since ✏ = 0

iff AK x  0 for some probability vector x that satisfies IC, Corollary 1 implies
that Ik.k

IC (K) = 0 if and only if K [ IC is consistent.
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Those probability distributions that minimally violate the knowledge base,
will be called the generalized models of the knowledge base (Potyka and Thimm,
2014).

Definition 8 (Generalized models with respect to k.k). Let K, IC be knowledge
bases such that IC is consistent. Let k.k be some continuous vector norm. The set
of generalized models of K with respect to the integrity constraints IC and k.k is
defined by

GMod

k.k
IC (K) = {P 2 Mod(IC) | 9✏ 2 Rm

: (P, ✏) is an optimal solution of (4)}.

Again, if IC and k.k are clear from context or not important for the discussion,
we will omit the corresponding sub- and superscript to improve readability. The
following proposition states some basic properties of generalized models. First,
generalized models always exist and the set of generalized models satisfies some
technical properties that will be useful for some proofs. Second, the generalized
models respect the integrity constraints, that is, each generalized model is also
a classical model of the integrity constraints. Third, if our knowledge base is
consistent with the integrity constraints, the generalized models will coincide with
the classical models. In particular, if K is consistent and IC = ;, the generalized
models will coincide with the classical models.

Proposition 2. 1. GMod(K) is always non-empty, convex and compact.

2. GMod

k.k
IC (K) ✓ Mod(IC).

3. If K [ IC is consistent, then GModIC(K) = Mod(K [ IC).

Proof. 1. We already showed in the proof of Proposition 1 that an optimal solution
of (4) exists. Hence, the set of optimal solutions of (4) is non-empty. We can see
from (4) that the set of optimal solutions correspond to the vectors (x, ✏) 2 Rn+m

that satisfy

k✏k  Ik.k
IC (K),

AK x  ✏,

AIC x  0,
nX

i=1

x
i

= 1,

x � 0,

✏ � 0.
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This is a system of convex continuous inequality constraints and one linear equal-
ity constraint. Therefore, the set of optimal solutions is convex and closed. Due
to the first (k✏k  Ik.k

IC (K)), fourth (
P

n

i=1 xi

= 1) and fifth (x � 0) constraint,
the set of optimal solutions is also bounded and therefore compact. GMod(K) is
the projection of the set of optimal solutions on the first n components ((x, ✏) is
mapped to x). Since the projection is linear and continuous, and the set of optimal
solutions is non-empty, convex and compact, GMod(K) is non-empty, convex and
compact.

2. If P 2 GMod

k.k
IC (K), then there is an ✏ such that (P, ✏) is an optimal solution

of (4) and by the second constraint of (4), P satisfies IC, i.e., P 2 Mod(IC).
3. If K [ IC is consistent, we know from Proposition 1 that IIC(K) = 0.

Each P 2 Mod(K [ IC) satisfies AKP  0 and therefore yields an optimal
solution (P, 0) of (4). Hence, Mod(K [ IC) ✓ GModIC(K). Conversely, if
P 2 GModIC(K), then AKP  0 (because of IIC(K) = 0 and definiteness of
vector norms) and AICP  0 (because of the second constraint of (4)). Hence,
also GModIC(K) ✓ Mod(K [ IC).

4. Generalized Entailment

4.1. Basic Definitions and Results

The framework developed so far allows us to generalize the classical probab-
ilistic entailment problem (see Definition 3) to the inconsistent case as follows.

Definition 9 (Generalized Probabilistic Entailment Problem, Entailment relation
|=gpe). Let K, IC be knowledge bases over X such that IC is consistent. Let
(� |  ) be a query with �, 2 L(X ), and let k.k be some continuous vector
norm. The generalized probabilistic entailment problem is to compute lower and
upper bounds on the probability of � given  among the generalized models of K,
that is, to solve the optimization problems

min

P2GMod

k.k
IC (K)

/ max

P2GMod

k.k
IC (K)

P (� ^  )
P ( )

, (5)

subject to P ( ) > 0.

If the generalized probabilistic entailment problem can be solved, and the min-
imum and maximum are l and u, we write K |=gpe

IC,k.k (� |  )[l, u].
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If IC and k.k are not important or clear from the context, we will omit the
lower indices to enhance readability. The objective function and the strict in-
equality constraint P ( ) > 0 look problematic from a computational perspective.
However, we can apply similar ideas like in (Charnes and Cooper, 1962) to derive
equivalent convex programs. For each formula F 2 L(X ), we let a

F

denote the
row vector whose i-th component is 1 if and only if the i-th world satisfies F .
Then for each probability distribution P over L(X )

a
F

P =

X

!2⌦

1

F

(!)P (!) = P (F ).

We can now derive the following equivalent convex programs.

Lemma 2. (5) is equivalent to the convex programs

min

(x,✏,s)2Rn+m+1
/ max

(x,✏,s)2Rn+m+1
a
�^ x (6)

subject to AK x  s · ✏,
k✏k  Ik.k

IC (K),

AIC x  0,

a
 

x = 1,
nX

i=1

x
i

= s,

x � 0,

✏ � 0,

s � 0.

Proof. (6) has a linear objective function and the constraints consist of linear
equalities and inequalities and a convex inequality. Therefore, (6) is a convex
program.

It remains to show that (6) is equivalent to (5). We will show that to each
feasible solution of (6), there is a feasible solution of (5) that yields the same
objective function value and vice versa.

Let P be a feasible solution of (5). Note that this in particular means that
P ( ) > 0. Let s =

1
P ( ) and x = sP , that is, x is the vector from Rn whose

i-th component contains the probability of the i-th world with respect to P scaled
by s. Since P is a generalized model of K, there is an ✏ 2 Rm such that (P, ✏)
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is an optimal solution of (4). Then (x, ✏, s) clearly satisfies the sixth to eighth
constraint. By feasibility of (P, ✏) with respect to (4), we get for the first constraint
that

AK x = sAK P  s✏.

For the second constraint, we have

k✏k = Ik.k
IC (K).

For the third constraint, we get

AIC x = sAK P  s0  0.

For the fourth constraint, we have

a
 

x = sa
 

P =

1

P ( )
P ( ) = 1.

Finally, we get for the fifth constraint that

nX

i=1

x
i

= s
nX

i=1

P (!
i

) = s.

Hence, (x, ✏, s) satisfies all constraints and is indeed a feasible solution of (6). For
the objective function value, we get

a
�^ x =

1

P ( )
a
�^ P =

P (� ^  )
P ( )

,

hence P and (x, ✏) yield indeed the same objective function value.
Conversely, let (x, ✏, s) be an optimal solution of (6). We let the corresponding

probability distribution P be defined by the probability vector kxk�1
1 x, that is, P

is obtained by normalizing x by dividing by the scalar kxk1 =

P
n

i=1 xi

= s
(the last equality follows from the fifth constraint of (6)). In particular, P ( ) =

kxk�1
1 a

 

x = kxk�1
1 1 > 0 (the last equality follows from the constraint a

 

x = 1

and feasibility of x) and we can check as before that P is a generalized model of
K and hence a feasible solution of (5). For instance,

AK P = kxk�1
1 AK x  s�1s✏ = ✏.
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In particular, the normalizing scalar cancels out in the objective function, i.e.,

P (� ^  )
P ( )

=

a
�^ P

a
 

P
=

kxk�1
1 a

�^ x

kxk�1
1 a

 

x
=

a
�^ x

1

,

where the last equality follows again from the constraint a
 

x = 1 and feasibility
of x. Hence, again P and (x, ✏, s) yield the same objective function value.

The following proposition explains in which cases the generalized entailment
problem has a solution.

Proposition 3 (Solvability of Generalized Probabilistic Entailment Problem). Let

K, IC be knowledge bases over X such that IC is consistent. Let (� |  ),�, 2
L(X ) be a query and let k.k be some continuous vector norm. Minimum and

maximum of (5) exist if and only if there is a P 2 GMod

k.k
IC (K) such that P ( ) >

0.

Proof. (5) has a feasible solution if and only if there is a P 2 GMod

k.k
IC (K) such

that P ( ) > 0. From the proof of Lemma 2 we know that this is the case if and
only if (6) has a feasible solution and that both optimization problems yield the
same results. Since (6) is a convex program, minimum and maximum do indeed
exist in the case of feasibility.

Since GMod

k.k
IC (K) is always non-empty, the generalized probabilistic entail-

ment problem often yields answers to queries even if the knowledge base K is
inconsistent. In case that P ( ) = 0 for all P 2 GMod

k.k
IC (K), we can return

the empty interval [1, 0] to indicate that the condition of the query is considered
impossible with respect to K (Lukasiewicz, 2001).

Before investigating some common-sense properties of generalized probabil-
istic entailment, let us look at some reasoning examples to get some intuition for
what happens under different norms. All examples will be modeled by a relational
logic under grounding semantics as explained in Example 2.

Example 4 (Nixon Diamond). Let us consider the Nixon diamond. We believe
that quakers are usually pacifists while republicans are usually not. However,
we know that Nixon was both a quaker and a republican. Our knowledge base
contains the following probabilistic conditionals:

(Pacifist(X) | Quaker(X))[0.9],

(Pacifist(X) |Republican(X))[0.1],

(Quaker(nixon) ^ Republican(nixon))[1].
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Table 1 shows the generalized entailment results when using different p-norms.
When using the 1-norm, the belief that Nixon is both a quaker and a republican

Query 1-norm 2-norm 1-norm
(Pacifist(nixon)) [0.1, 0.9] [0.376, 0.624] [0.376, 0.624]
(Quaker(nixon)) [1] [0.744, 1] [0.724, 1]
(Republican(nixon)) [1] [0.744, 1] [0.724, 1]
(Pacifist(X) | Quaker(X)) [0.1, 0.9] [0.517, 0.615] [0.519, 0.624]
(Pacifist(X) |Republican(X)) [0.1, 0.9] [0.385, 0.483] [0.376, 0.481]

Table 1: Generalized entailment results (rounded to 3 digits) for probabilistic Nixon diamond.

is maintained. On the other hand, our beliefs about the relationship between pa-
cifists, quakers and republicans are weakened substantially. In contrast, when
using the 2- and 1-norm, our beliefs in Nixon being a quaker and a republican
are weakened, but it is still regarded more likely (> 0.5) that a quaker is a paci-
fist and a republican is not. The reason for this behavior is most likely that the
1-norm does not care about the extent of individual violations of constraints, but
only about the overall violation of the knowledge base. In contrast, when using
a p-norm for p > 1, higher violations of constraints are penalized more heavily
due to the exponent p. Therefore, with increasing p, the violation of constraints is
often more distributed among conflicting constraints.

Example 5 (Combining Probabilistic Classifiers). Suppose we want to incorpor-
ate a classification task in our reasoning system and trained several probabilistic
classifiers using methods like logistic regression. Let us use the linear constraint
⇡(L = l) = ⇢ to express that l is the right label with probability ⇢. In order
to use these results for probabilistic reasoning, there are at least two kinds of in-
consistencies we have to deal with. First, it is highly unlikely that all classifiers
compute exactly the same probability for all labels and classical probabilistic reas-
oning approaches cannot deal with even minor deviations. For instance, if we get
⇡(L = l) = 0.9 for the first and ⇡(L = l) = 0.89 for the second classifier, the
knowledge base would be inconsistent and classical probabilistic entailment was
not applicable. Second, multiclass classification is often performed by training a
binary classifier for each label. So if we have three labels, it might well be that
we get ⇡(L = l1) = 0.9, ⇡(L = l2) = 0.7, ⇡(L = l3) = 0.2 for a single classifier.
This information is contradictory because the probabilities of the labels have to
sum to 1. Of course, we could just renormalize the values or introduce a boolean
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variable for each label, but we can also resolve both types of inconsistencies auto-
matically by applying generalized probabilistic entailment. Let us consider the
following knowledge base, where each row corresponds to the results of a single
classifier (formally, we regard this knowledge base as a multiset):

⇡(L = l1) = 0.9 ⇡(L = l2) = 0.7 ⇡(L = l3) = 0.2

⇡(L = l1) = 0.8 ⇡(L = l2) = 0.9 ⇡(L = l3) = 0.5

⇡(L = l1) = 0.9 ⇡(L = l2) = 0.9 ⇡(L = l3) = 0.4

Table 2 shows the generalized entailment results when using different p-norms.
The 1-norm yields again very conservative results, whereas we end up with point

Query 1-norm 2-norm 1-norm
(L = l1) [0.1, 0.8] [0.511] [0.467]
(L = l2) [0, 0.7] [0.478] [0.467]
(L = l3) [0, 0.2] [0.111] [0.067]

Table 2: Generalized entailment results (rounded to 3 digits) for probabilistic classification ex-
ample.

probabilities for the 2- and 1-norm. Intuitively, generalized probabilistic en-
tailment merged and normalized the probabilities in an automatic fashion. Note
that we could further control the influence of different classifiers by setting their
weights according to our preferences.

Example 6 (Diagnosis). Let us consider a medical toy example. Suppose we have
some data about patients who most likely suffered from a cold and we want to use
this data to revise our beliefs about our diagnosis and the symptoms of a cold. We
assume that the symptoms have been recorded reliably and so we model this in-
formation by integrity constraints of the form (has symptom(patient, symptom))[x],
where x 2 {0, 1} dependent on whether the symptom was present or not. Table
3 shows the values of x for all patients and all symptoms. Our knowledge base
contains a rule of the form (has disease(Patient,cold))[1] for each patient from
Table 3. By putting these rules into the knowledge base rather than into the
set of integrity constraints, we incorporate our beliefs that all patients suffered
from a cold without making this information irrefutable. We also add a rule
(induces symptom(cold, Symptom))[1] for each symptom from Table 3. Finally,
we add the general rule

(has symptom(P,S) | has disease(P,D) ^ induces symptom(D,S))[1]
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alice bob charles dora eliza
fever 1 0 1 0 0

headache 1 1 1 1 0
cough 1 1 0 1 1

Table 3: Integrity constraints for diagnosis example.

that states that if a patient has a disease D and this disease induces symptom
S, then the patient will have symptom S. Table 4 shows some query results for
different norms. Recall that our knowledge base contains the assumptions that all

Query 1-norm 2-norm 1-norm
(has disease(alice,cold)) [1] [1] [0.667, 1]
(has disease(bob,cold)) [1] [0.769] [0.667]
(has disease(charles,cold)) [0, 1] [0.667] [0.667]
(has disease(dora,cold)) [1] [0.769] [0.667]
(has disease(eliza,cold)) [0, 1] [0.615] [0.667]

(induces symptom(cold,fever)) [0] [0.461] [0.667]
(induces symptom(cold,headache)) [0, 1] [0.692] [0.667]
(induces symptom(cold,cough)) [0, 1] [0.667] [0.667]

Table 4: Generalized entailment results (rounded to 3 digits) for diagnosis example.

patients suffer from a cold, that a cold induces all symptoms and that a patient who
suffers from a disease that induces a certain symptom has to feature this symptom.
So we might expect that the probability that a patient suffers from a cold decreases
if the patient does not feature all of the symptoms. This can be best observed from
the 2-norm. In particular, the probability for Alice, who features all symptoms,
remains 1, whereas the probability for Eliza, who features only one symptom, is
the lowest. The probability for Charles is also decreased compared to the other to
patients who feature 2 symptoms. The reason is most likely that he suffers from
fever, which only 2 of 5 patients do, whereas he does not suffer from cough, which
all other patients do. This is also reflected in the probabilities that a symptom is
induced by a cold, where fever has a significantly lower probability for the 2-
norm. Whereas the results for 1- and 1-norm can also be explained by their
special behaviour (not preferring small violations over large ones for the 1-norm
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and only caring about the maximum violation for the 1-norm), we note that the
2-norm yields the most intuitive results.

4.2. Properties

We will now consider some common-sense properties of generalized probab-
ilistic entailment. The first result states that generalized probabilistic entailment
indeed generalizes probabilistic entailment in the sense that the results coincide
for consistent knowledge bases.

Proposition 4 (Consistency). If K[IC is consistent, the generalized probabilistic

entailment problem coincides with the probabilistic entailment problem. That is,

K |=gpe

IC,k.k (� |  )[l, u] iff (K [ IC) |=pe

(� |  )[l, u].

Proof. The claim follows immediately from item 3 of Proposition 2 because it
says that the feasible regions of the generalized probabilistic entailment problem
and the probabilistic entailment problem are equal if K [ IC is consistent.

Next, we consider some properties that are related to the intuition that reas-
oning results should be independent of knowledge that is not related to the query.
In order to make this precise, we need to restrict and to extend possible worlds.
If ! is a possible world wrt. X and X 0 ✓ X then !|X 0 denotes the restriction of
! to X 0. Conversely, we can combine possible worlds over disjoint sets to pos-
sible worlds of the union of these sets. For instance, if we let !1 = !|X 0 and
!2 = !|X\X 0 then !1 and !2 can be combined to ! and we write ! = (!1,!2).
The following lemma states some simple rules for computing with independent
probability distributions in our framework.

Lemma 3 (Product Distribution, Marginal Distribution). Let X1,X2 be disjoint

sets of random variables, let X = X1 [ X2 and let ⌦1,⌦2,⌦ denote the corres-

ponding sets of possible worlds.

1. Let P1, P2 be probability distributions over X1,X2. Then P : ⌦ ! [0, 1]
defined by P (!) = P1(!|X1)P2(!|X2) for all ! 2 ⌦ is a probability distri-

bution over X . In particular, for all �1 2 L(X1), we have P (�1) = P1(�1).

2. Let P be a probability distribution over X . Then P1 : ⌦1 ! [0, 1] defined

by P1(!1) =
P

!22⌦2
P (!1,!2) for all !1 2 ⌦1 is a probability distribution

over X1. In particular, for all �1 2 L(X1), we have P (�1) = P1(�1).
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Proof. 1. For all �1 2 L(X1), we have

P (�1) =

X

(!1,!2)2Mod(�1)

P1(!1)P2(!2) =

X

!12⌦1

X

!22⌦2

1

�

(!1)P1(!1)P2(!2)

=

X

!12⌦1

1

�

(!1)P1(!1)

| {z }
=P1(�1)

X

!22⌦2

P2(!2)

| {z }
=1

.

Hence, P (�1) = P1(�1). In particular,
P

!2⌦ P (!) = P (>) = P1(>) = 1 and
by non-negativity of P1, P2, P is non-negative. Hence, P is indeed a probability
distribution over X .

2. For all �1 2 L(X1), we have

P1(�1) =

X

!12Mod(�1)

X

!22⌦2

P (!1,!2) =

X

!12⌦1

1

�

(!1)

X

!22⌦2

P (!1,!2)

=

X

!12⌦1

X

!22⌦2

1

�

(!1,!2)P (!1,!2) = P (�1).

We can check that P1 is a probability distribution over X1 like in item 1.

We will denote the product distribution P from item 1 of Lemma 3 by P1�P2

and the marginal distribution P1 from item 2 by P |X1 . Note that by symmetry, we
can consider the marginal distribution P |X2 analogously.

Lemma 3 implies that generalized entailment is language-invariant, that is,
adding new random variables to the language does not change inference results.

Corollary 2 (Language Invariance). Let K, IC be knowledge bases over X and let

IC be consistent. Let k.k be some continuous vector norm and let (� |  ),�, 2
L(X ) be a query over L(X ). Let X 0

be a set of random variables with X\X 0
= ;.

If

• K |=gpe

IC,k.k (� |  )[l, u] holds in L(X ) and

• K |=gpe

IC,k.k (� |  )[l0, u0
] holds in L(X [ X 0

),

then l = l0 and u = u0
.

Proof. Consider a model P of K with respect to L(X ). Let P 0 be the uniform
distribution over L(X 0

). Then Lemma 3 implies that the product distribution P ⇤
=

P � P 0 will agree with P on L(X ). Therefore, P ⇤ is a model of K with respect
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to L(X [X 0
) that yields the same probability for the query. Therefore, l0  l and

u  u0.
Conversely, let P 0 be a model of K with respect to L(X [ X 0

). Then Lemma
3 implies that the marginal distribution P 0|X agrees with P 0 on L(X ). Hence,
P 0|X is a model of K with respect to L(X ) that yields the same probability for the
query. Therefore, also l  l0 and u0  u and the claim follows.

In a similar spirit, we might expect that if our knowledge base can be decom-
posed into independent parts and if our query depends only on one part, then the
result should depend only on this one part. As it turns out, we have to further
restrict norms to satisfy this desideratum.

Definition 10 ((Weakly) Dimension-Consistent Vector Norm). A vector norm k.k
is called dimension-consistent iff for all x1, y1 2 Rk1 , x2, y2 2 Rk2 , we have that

1. k
✓
x1

x2

◆
k < k

✓
y1
y2

◆
k implies that kx1k < ky1k or kx2k < ky2k.

2. kx1k < ky1k and kx2k  ky2k implies that k
✓
x1

x2

◆
k < k

✓
y1
y2

◆
k.

If 2. only holds when both inequalities in the condition are strict, i.e.,

• kx1k < ky1k and kx2k < ky2k implies that k
✓
x1

x2

◆
k < k

✓
y1
y2

◆
k,

we call k.k weakly dimension-consistent.

The 1-norm is an example of a norm that satisfies only the weaker version of
item 2.

Example 7. We have k
�
0

�
k1 < k

�
1

�
k1 and k

�
1

�
k1  k

�
1

�
k1 but k

✓
0

1

◆
k1 =

1 = k
✓
1

1

◆
k1.

The 1-norm is weakly dimension-consistent and for p < 1, p-norm-related
norms are dimension-consistent as we show shortly. However, this needs not to
be true when we allow adding weights in an arbitrary manner as the following
example illustrates.

23



Example 8. Consider weights w with w1 = 1, w2 = 3, w3 = 1. Let x1 = (11),
y1 = (10), x2 = (10, 11)T , y2 = (11, 10)T . Then

k

0

@
11

10

11

1

A k1,w = 52 < 53 = k

0

@
10

11

10

1

A k1,w, but

k
�
11

�
k1,w = 11 > 10 = k

�
10

�
k1,w and k

✓
10

11

◆
k1,w = 43 > 41 = k

✓
11

10

◆
k1,w.

The problem in the example is, of course, that we weight the components dif-
ferently as we decompose the vector. However, in practice, we associate weights
with probabilistic constraints rather than with dimensions and change the weight
vector appropriately when we consider subsets of the knowledge base. We could
take account of this formally by considering a weighting function, rather than a
weight vector, but in order to keep our notation simple, we will not do so. The
results that we present for (weakly) dimension-consistent vector norms in the fol-
lowing are also true for weighted p-norm-related norms as long as the weights for
subvectors are adapted appropriately. We explain this precisely in the following
lemma.

Lemma 4. Let x1, y1 2 Rk1 , x2, y2 2 Rk2
and let kxkw

p

be a w-weighted p-norm-

related norm. Let w(1)
= (w1, . . . , wk1 , 0, . . . ), w

(2)
= (w

k1+1, . . . , wk1+k2 , 0, . . . )
(w(1)

starts with the first k1 elements of w and w(2)
with the following k2 elements,

all following elements are 0). Then

1. k
✓
x1

x2

◆
kw
p

< k
✓
y1
y2

◆
kw
p

implies that kx1kw
(1)

p

< ky1kw
(1)

p

or kx2kw
(2)

p

<

ky2kw
(2)

p

.

2. kx1kw
(1)

p

< ky1kw
(1)

p

and kx2kw
(2)

p

 ky2kw
(2)

p

implies that k
✓
x1

x2

◆
kw
p

<

k
✓
y1
y2

◆
kw
p

for p < 1.

3. kx1kw
(1)

p

< ky1kw
(1)

p

and kx2kw
(2)

p

< ky2kw
(2)

p

implies that k
✓
x1

x2

◆
kw
p

<

k
✓
y1
y2

◆
kw
p

for p = 1.

Proof. 1. First, consider the case that kxkw
p

is a raised w-weighted p-norm kxkp
p,w

=P
n

i=1 wi

|x
i

|p. We prove the claim’s contraposition. Suppose that both kx1kp
p,w

(1) �
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ky1kp
p,w

(1) and kx2kp
p,w

(2) � ky2kp
p,w

(2) . Then

k
✓
x1

x2

◆
kp
p,w

=

k1X

i=1

w
i

· |x1,i|p +
k2X

i=1

w
k1+i

· |x2,i|p = kx1kp
p,w

(1) + kx2kp
p,w

(2)

� ky1kp
p,w

(1) + ky2kp
p,w

(2) = k
✓
y1
y2

◆
kp
p,w

.

Next consider a w-weighted p-norm kxk
p,w

. Note that kxk
p,w

=

p
p

kxkp
p,w

.

Hence, by monotonicity of the root function, k
✓
x1

x2

◆
k
p,w

< k
✓
y1
y2

◆
k
p,w

im-

plies k
✓
x1

x2

◆
kp
p,w

< k
✓
y1
y2

◆
kp
p,w

. From our previous result, we can conclude

kx1kp
p,w

(1) < ky1kp
p,w

(1) or kx2kp
p,w

(2) < ky2kp
p,w

(2) . Taking the p-th root, we can
conclude that kx1k

p,w

(1) < ky1k
p,w

(1) or kx2k
p,w

(2) < ky2k
p,w

(2) as desired.
Finally consider a w-weighted 1-norm kxk1,w

= max{|w1 · x1|, . . . , |wn

·
x
n

|}. We prove the claim’s contraposition again. Suppose that both kx1k1,w

(1) �
ky1k1,w

(1) and kx2k1,w

(2) � ky2k1,w

(2) . Then

k
✓
x1

x2

◆
k1,w

= max{|w1 · x1|, . . . , |wn

· x
n

|}

= max{max{|w1 · x1|, . . . , |wk1 · xk1 |},max{|w
k1+1 · xk1+1|, . . . , |wk1+k2 · xk1+k2 |}}

= max{kx1k1,w

(1) , kx2k1,w

(2)}
� max{ky1k1,w

(1) , ky2k1,w

(2)} = max{|w1 · y1|, . . . , |wn

· y
n

|}

= k
✓
y1
y2

◆
k1,w

.

2. For the case that kxkw
p

is a raised w-weighted p-norm kxkp
p,w

=

P
n

i=1 wi

|x
i

|p,
kx1kp

p,w

(1) < ky1kp
p,w

(1) and kx2kp
p,w

(2)  ky2kp
p,w

(2) implies

k
✓
x1

x2

◆
kp
p,w

=

k1X

i=1

w
i

· |x1,i|p +
k2X

i=1

w
k1+i

· |x2,i|p = kx1kp
p,w

(1) + kx2kp
p,w

(2)

< ky1kp
p,w

(1) + ky2kp
p,w

(2) = k
✓
y1
y2

◆
kp
p,w

.

For weighted p�norms the claim follows analogously to 1.
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3. Consider a w-weighted 1-norm kxk1,w

= max{|w1 · x1|, . . . , |wn

· x
n

|}.
kx1k1,w

(1) < ky1k1,w

(1) and kx2k1,w

(2) < ky2k1,w

(2) implies

k
✓
x1

x2

◆
k1,w

= max{|w1 · x1|, . . . , |wn

· x
n

|}

= max{max{|w1 · x1|, . . . , |wk1 · xk1 |},max{|w
k1+1 · xk1+1|, . . . , |wk1+k2 · xk1+k2 |}}

= max{kx1k1,w

(1) , kx2k1,w

(2)}
< max{ky1k1,w

(1) , ky2k1,w

(2)} = max{|w1 · y1|, . . . , |wn

· y
n

|}

= k
✓
y1
y2

◆
k1,w

.

Remark 2. Note that an unweighted p-norm-related norm corresponds to the spe-
cial case of a (1)-weighted p-norm-related norm (that is, the weight of each di-
mension is 1). In this case, the lemma does indeed say that unweighted p-norm-
related norms for p < 1 are dimension-consistent and that the 1-norm is weakly
dimension-consistent in the sense of Definition 10.

In the following lemma, we state some matrix computation rules for independ-
ent knowledge bases.

Lemma 5 (Matrix Multiplication with Product Distribution and Marginal Distri-
bution). Let X1,X2 be disjoint sets of random variables, let X = X1 [ X2 and

let ⌦1,⌦2,⌦ denote the corresponding sets of possible worlds. Let K1 be a know-

ledge base over L(X1) and let K2 be a knowledge base over L(X2).

1. Let P1, P2 be probability distributions over X1,X2 and let P = P1 � P2

denote the corresponding product distribution over X . Then

A(K1[K2)P =

✓
AK1P1

AK2P2

◆
.

2. Let P be a probability distribution over X and let P
i

= P |Xi for i = 1, 2.

Then

A(K1[K2)P =

✓
AK1P1

AK2P2

◆
.

Proof. 1. Let r1, . . . , rk1 denote the rows of A(K1[K2) that correspond to the con-
straints in K1 and let r

k1+1, . . . rk1+k2 denote the remaining rows that correspond
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to the constraints in K2. Then for all i 2 1, . . . , k1 + k2, we have

r
i

P =

X

!2⌦

ai
!

P (!) =
X

!12⌦1

X

!22⌦2

(hi

0 +

miX

j=1

1

�

i
j
(!1,!2)h

i

j

)P1(!1)P2(!2)

as explained in Lemma 1. For i 2 {1, . . . , k1}, we have

r
i

P =

X

!12⌦1

X

!22⌦2

(hi

0 +

miX

j=1

1

�

i
j
(!1,!2)h

i

j

)P1(!1)P2(!2)

=

X

!12⌦1

(hi

0 +

miX

j=1

1

�

i
j
(!1)h

i

j

)P1(!1)

X

!22⌦2

P2(!2)

=

X

!12⌦1

(hi

0 +

miX

j=1

1

�

i
j
(!1)h

i

j

)P1(!1),

where we used the fact that 1
�

i
j
(!1,!2) = 1

�

i
j
(!1) because the formulas in K1

depend only on !1. If we let s
i

denote the i-th row of AK1 , we get again from
Lemma 1 that

s
i

P1 =

X

!12⌦1

(hi

0 +

miX

j=1

1

�

i
j
(!1)h

i

j

)P1(!1) = r
i

P.

In the same way, we can show that for i 2 {k1 + 1, . . . , k1 + k2}, we have r
i

P =

s0
i

P2, where s0
i

denotes the (i� k1)-th row of AK2 . Therefore,

A(K1[K2)P =

0

BBBBBB@

r1P
. . .
r
k1P

r
k1+1P
. . .

r
k1+k2P

1

CCCCCCA
=

0

BBBBBB@

s1P1

. . .
s
k1P1

s01P2

. . .
s0
k2
P2

1

CCCCCCA
=

✓
AK1P1

AK2P2

◆
.

2. The proof is similar to the proof of item 1 and is therefore left out.

We can now explain precisely how we can decompose independent knowledge
bases and their generalized models.

Lemma 6 (Decomposability of Independent Knowledge Bases). Let X1,X2 be

disjoint sets of random variables, let K
i

denote a linear probabilistic knowledge

base over L(X
i

) and let IC
i

be a consistent knowledge base over L(X
i

) for i =
1, 2. Let k.k be some continuous, weakly dimension-consistent vector norm.
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1. If P
i

is a probability distribution over X
i

that is a generalized model of K
i

for i = 1, 2, then P = P1 � P2 is a generalized model of (K1 [K2).

If k.k is dimension-consistent (not only weakly), we also have

2. If P is a probability distribution over X1 [ X2 that is a generalized model

of K1 [K2, then P1 = P |X1 is a generalized model of K1.

Proof. 1. According to Lemma 3, P is a probability distribution that coincides
with P

i

on L(X
i

). Therefore, P in particular satisfies both IC1 and IC2 since P
i

satisfies IC
i

. It remains to show that P minimally violates K1 [K2. For the sake
of contradiction, suppose this is not the case. Then consider some generalized
model P 0 of K1[K2. Since P is not a generalized model of K1[K2, we have that

k
✓
A1

A2

◆
P 0k < k

✓
A1

A2

◆
Pk. Let P 0

i

= P 0|Xi for i = 1, 2. Then k
✓
A1P

0
1

A2P
0
2

◆
k <

k
✓
A1P1

A2P2

◆
k according to Lemma 5 and our assumption that P is not a generalized

model. Then dimension-consistency implies that kA1P
0
1k < kA1P1k or kA2P

0
2k <

kA2P2k. Without loss of generality assume that kA1P
0
1k < kA1P1k. Then this

contradicts the fact that P1 is a generalized model of K1. Hence, P minimally
violates K1 [ K2 and is indeed a generalized model of K1 [ K2 that yields the
same objective function value.

2. According to Lemma 3, P1 is a probability distribution that coincides with
P on L(X1). Therefore, P1 in particular satisfies IC1 since P satisfies IC1. It
remains to show that P1 minimally violates K1. For the sake of contradiction,
suppose this is not the case. Consider some generalized model P 0

1 of K1. Since P1

is not a generalized model of K1, we have that kA1P
0
1k < kA1P1k. Let P2 = P |X2

and let P 0
2 be a generalized model of K2. Then kA2P

0
2k  kA2P2k and P 0

= P 0
1�

P 0
2 is a generalized model of K1[K2 according to item 1. Dimension-consistency

implies that kAK1[K2P
0k = k

✓
A1

A2

◆✓
P 0
1

P 0
2

◆
k < k

✓
A1

A2

◆✓
P1

P2

◆
k = kAK1[K2Pk,

but this contradicts the assumption that P is a generalized model of K1 [K2.

For dimension-consistent vector norms, we can decompose the reasoning prob-
lem whenever the knowledge base decomposes into independent parts as explained
in the following proposition.

Proposition 5 (Independence). Let X1,X2 be disjoint sets of random variables,

let K
i

denote a linear probabilistic knowledge base over L(X
i

) and let IC
i

be a

consistent knowledge base over L(X
i

) for i = 1, 2. Let k.k be some continuous,
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dimension-consistent vector norm and let (�1 |  1),�1, 1 2 L(X1) be a query

over L(X1). If

• K1 |=gpe

IC1,k.k (�1 |  1)[l1, u1] holds in L(X1) and

• (K1 [K2) |=gpe

(IC1[IC2),k.k (�1 |  1)[l, u] holds in L(X1 [ X2),

then l1 = l and u1 = u.

Proof. We prove the claim by showing that to each feasible solution of the gener-
alized entailment problem with respect to K1, IC1 and L(X1) there corresponds a
feasible solution of the generalized entailment problem with respect to (K1[K2),
(IC1 [ IC2) and L(X1 [ X2) with the same objective function value and vice
versa.

Suppose that P1 is a probability distribution over X1 that is a generalized
model of K1. Let P2 be some probability distribution over X2 that is a generalized
model of K2. Then the distribution P = P1 � P2 over X1 [ X2 is a generalized
model of K1 [ K2 (Lemma 6) that yields the same objective function value like
P1 (Lemma 3).

Conversely, suppose that P is a generalized model of K1 [ K2. Then we can
show analogously as before that P1 = P |X1 is a generalized model of K1 that
yields the same objective function value.

Remark 3. For weakly dimension-consistent vector norms like the maximum
norm, the proof still shows that [l1, u1] ✓ [l, u]. However, [l, u] can be a larger
interval if the minimal violation value of K2 is larger than the one of K1. In this
case, the constraints for K1 will be relaxed more strongly in K1 [ K2 than when
only considering K1 on its own.

Independence guarantees robustness of generalized entailment in the sense
that classical probabilistic entailment results are maintained if the query is inde-
pendent of the inconsistent information in the knowledge base.

Corollary 3 (Consistent Independence). Let X1,X2 be disjoint sets of random

variables, let K
i

denote a linear probabilistic knowledge base over L(X
i

) and let

IC
i

be a consistent knowledge base over L(X
i

) for i = 1, 2. Let k.k be some

continuous, dimension-consistent vector norm and let (�1 |  1),�1, 1 2 L(X1)

be a query over L(X1). If K1 is consistent,

• (K1 [ IC) |=pe

(�1 |  1)[l1, u1] holds in L(X1) and
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• (K1 [K2) |=gpe

(IC1[IC2),k.k (�1 |  1)[l, u] holds in L(X1 [ X2),

then l1 = l and u1 = u.

Proof. According to Proposition 5, (K1[K2) |=gpe

(IC1[IC2),k.k (�1 |  1)[l, u] implies
that K1 |=gpe

IC1,k.k (�1 |  1)[l, u] holds in L(X1). Then consistency of K1 and
Proposition 4 imply that (K1[IC) |=pe

(�1 |  1)[l, u], i. e., l1 = l and u1 = u.

Consistent Independence relies on the assumption that the norm is dimension-
consistent, not only weakly dimension-consistent. Indeed, the maximum norm
does not satisfy this robustness property as we demonstrate in the following ex-
ample.

Example 9. Consider the knowledge base K1 = {(a)[0.5]}. K1 is consistent and
K1 |=pe

(a)[0.5]. The knowledge base K2 = {(b)[0.6], (b)[0.8]} is inconsistent
and independent of K1. So we would expect that the generalized entailment results
do not change. However, we have

�
K1 [ K2

�
|=gpe

;,k.k1 (a)[0.4, 0.6]. The reason
for this behavior is that the maximum norm only looks at the maximal violation
of a probabilistic constraint. Since adding K2 makes the violation value positive,
the conditional (a)[0.5] can be relaxed after adding K2 when using the maximum
norm. Hence, the maximum norm does not satisfy Consistent Independence.

It would be desirable if generalized entailment behaved continuously in the
sense that minor changes in the probabilities stated in the knowledge base could
yield only minor changes in the derived probabilities. However, this is not even
true for probabilistic entailment as the following example by Paris shows, see
(Paris, 1994), Example 3.251.

Example 10. Consider a disease d, a symptom s and a possible complication c.
Let K be defined via

K = { ⇡(d | s) = 0.75, ⇡(d | ¬s) = 0.25, ⇡(¬c ^ d | s) = 0.15,

⇡(¬c | d ^ ¬s) = 0.6, ⇡(c | d ^ s) = 0.8, ⇡(c ^ d | ¬s) = 0.1 }

K is consistent and, for instance, K |=pe

(¬s)[0, 1]. However, if we construct K0

from K by replacing ⇡(c ^ d | ¬s) = 0.1 with ⇡(c ^ d | ¬s) = 0.0999, we have
K |=pe

(¬s)[0, 0].

1The example was originally proposed in P. Courtney, Doctoral thesis, Manchester University,
Manchester, U.K., 1992.
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To exclude such discontinuities, Paris defined convergence of consistent know-
ledge bases by means of the Blaschke metric (Paris, 1994).

Definition 11 (Blaschke Metric). Let S1, S2 ✓ Rn be convex sets. S1, S2 have
Blaschke distance d, kS1, S2kB = d, iff d is the smallest value such that for every
x1 2 S1, there is a x2 2 S2 such that kx1�x2k2  d and vice versa. More strictly
speaking, we let d be the infimum of

{� | 8x1 2 S19x2 2 S2 : kx1�x2k2  � and 8x2 2 S29x1 2 S1 : kx1�x2k2  �}.

If there is no such �, we let d = 1.

Instead of measuring the distance between modified knowledge bases by the
difference in the probabilities, Paris then measures the distance by comparing the
induced sets of models. However, since inconsistent knowledge bases always
induce the empty set of models, this topology becomes meaningless when consid-
ering inconsistent knowledge bases, see (Potyka, 2015b), Observation 6.30, for
a detailed discussion. The natural extension to our framework is to replace the
models with the generalized models.

Definition 12 (Generalized Blaschke Distance between Knowledge bases). The
generalized Blaschke distance between knowledge bases is defined as

kK1,K2kB = kGMod

k.k
IC (K1),GMod

k.k
IC (K2)kB

for all knowledge bases K1,K2.

The generalized Blaschke distance is directly defined from the Blaschke met-
ric and therefore inherits symmetry and triangle inequality. It is not definite, how-
ever. For instance, all equivalent consistent knowledge bases have the same set
of (generalized) models and so their distance will be 0. The generalized Blaschke
distance is therefore only a pseudometric.

Definition 13 (Convergence of Knowledge Bases). Let (K
i

) be a sequence of
knowledge bases. We say (K

i

) converges to K (with respect to IC and k.k ),
K

i

!k.k
IC K, iff for each ✏ > 0, there is an N 2 N such that i � N implies

kK1,K2kB < ✏.

Our definition generalizes Paris’ topology over knowledge bases in the sense
that whenever (K

i

) converges to a consistent knowledge base K with respect to
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Paris’ notion of convergence, we also have K
i

!k.k
; K, see Potyka (2015b), Pro-

position 6.32.
Let us first note that if two knowledge bases are close with respect to the

generalized Blaschke distance, then the probabilities entailed by these knowledge
bases are also close.

Lemma 7. For all ✏ > 0, and for all linear probabilistic knowledge bases K1,K2

over a language L(X ) with n possible worlds, kK1,K2kB < ✏p
n

implies that for

all P1 2 GMod

k.k
IC (K1), there is a P2 2 GMod

k.k
IC (K2) such that |P1(F )�P2(F )| <

✏ for all formulas F 2 L(X ).

Proof. We know from Real Analysis that kxk1 
p
nkxk2 for all x 2 Rn. Note

also that for all probability distributions P, P 0 and formulas F, we have |P (F ) �
P 0

(F )| 
P

!2Mod(F ) |P (!)�P 0
(!)|  kP �P 0k1. Therefore, kK1,K2kB < ✏p

n

implies that for all P1 2 GMod

k.k
IC (K1), there is a P2 2 GMod

k.k
IC (K2) such that

|P (F )� P 0
(F )|  kP � P 0k1 

p
nkP � P 0k2 < ✏.

Note that by symmetry the lemma is also true if we switch the roles of P1

and P2. An immediate consequence is that Generalized Probabilistic Entailment
is continuous for queries with tautological condition. We call these unconditional

queries.

Corollary 4 (Blaschke Continuity for Unconditional Queries). Let (K
i

) be a se-

quence of knowledge bases such that K
i

!k.k
IC K and let (�) be an unconditional

query. If

• K |=gpe

IC,k.k (�)[l, u] and

• K
i

|=gpe

IC,k.k (�)[li, ui

] for i 2 N

then l
i

! l and u
i

! u (in the usual sense).

Proof. Since K
i

!k.k
IC K, for each ✏ > 0, there is an N 2 N such that i �

N implies kK1,K2kB < ✏p
n

. Therefore, Lemma 7 implies that for all P
i

2
GMod

k.k
IC (Ki

) (P 2 GMod

k.k
IC (K)), there is a P 2 GMod

k.k
IC (K) (P

i

2 GMod

k.k
IC (Ki

))
such that |P

i

(�)�P (�)| < ✏. Therefore, the lower and upper bounds on the prob-
ability of � with respect to K and K

i

must converge as i ! 1. That is, l
i

! l and
u
i

! u.
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For conditional probability queries, we impose a technical precondition that
excludes some difficult boundary cases. It basically states that if K

i

is sufficiently
close to K then the probability of the condition of the query can be bounded away
from 0 - at least for some probability distributions that take the extremal condi-
tional probabilities.

Proposition 6 (Blaschke Continuity for Positive Conditional Queries). Let (K
i

)

be a sequence of knowledge bases such that K
i

!k.k
IC K and let (� |  ) be some

query. If

• K |=gpe

IC,k.k (� |  )[l, u] and

• K
i

|=gpe

IC,k.k (� |  )[l
i

, u
i

] for i 2 N

and there is an ✏0 > 0 and an N0 2 N such that for all i > N0, the lower and

upper bounds on the conditional probability of � given  for K
i

are taken by some

P l

i

, P u

i

2 GMod

k.k
IC (Ki

) with P l

i

( ) � ✏0 and P u

i

( ) � ✏0, then l
i

! l and u
i

! u
(in the usual sense).

Proof. For ease of notation, let G = GMod

k.k
IC (K) and G

i

= GMod

k.k
IC (Ki

).
Let us show that l

i

! l. Let P 2 G be a minimal point, i.e., P (�^ )
P ( ) = l.

Consider an arbitrarily small ✏ such that 0 < ✏ < P ( ). and let � < ✏P ( )
4
p
n

. Then
kG,G

i

k
B

< � implies that for all P 2 G with P ( ) > 0 there must be a P 0 2 G
i

with P 0
( ) > 0 such that

|P (� ^  )
P ( )

� P 0
(� ^  )
P 0

( )
| = |P (� ^  )P 0

( )� P 0
(� ^  )P ( )

P ( )P 0
( )

|

 |P (� ^  )(P ( ) + �)� (P (� ^  )� �)P ( )

P ( )12P ( )
|

= 2|P (� ^  )� + �P ( )

P ( )2
|

 2�|2P ( )

P ( )2
| = | 4�

P ( )
| < ✏.

In the second line, we used the fact that � < ✏P ( )
4 < P ( )

2 , which implies P 0
( ) >

P ( )� � > 1
2P ( ). Hence, if i is sufficiently large, l

i

 l + ✏.
Let us now show that l

i

� l � ✏ also holds if i is sufficiently large. Let us
assume that i > N0 and that i is so large that kG,G

i

k
B

< � for � < ✏✏0
4
p
n

. Then,
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in particular, � < ✏P

l
i ( )

4
p
n

for all such sufficiently large i and for each such P l

i

there

must be a P
i

2 G such that |P
l
i (�^ )
P

l
i ( )

� Pi(�^ )
Pi( )

| < ✏ (this can be seen as above).
Hence, if i is sufficiently large, l  l

i

+ ✏.
Hence, l � ✏  l

i

 l + ✏ for all ✏ > 0 and sufficiently large i and so l
i

! l.
The argumentation for u

i

! u is analogous.

Blaschke Continuity gives us a second robustness property: If our knowledge
base is close to a consistent knowledge base, then the generalized entailment res-
ults will be close to the probabilistic entailment results with respect to the consist-
ent knowledge base. We make this more precise in the following corollary.

Corollary 5 (Consistent Blaschke Continuity). Let K, IC be knowledge bases

such that (K[ IC) is consistent. Let (K
i

) be a sequence of knowledge bases such

that K
i

!k.k
IC K and let (� |  ) be some query. If

• (K [ IC) |=pe

(� |  )[l, u] and

• K
i

|=gpe

IC,k.k (� |  )[l
i

, u
i

] for i 2 N

and the other conditions from Proposition 6 are true, then l
i

! l and u
i

! u (in

the usual sense).

Proof. From Consistency (Proposition 4), we know that K |=gpe

IC,k.k (� |  )[l, u].
From this, the claim follows with Proposition 6.

5. Generalized Model Selection

Let us now consider the probabilistic model selection problem. Analogously
to the probabilistic entailment problem, we can extend the probabilistic model
selection problem to the inconsistent case by replacing the models with the gen-
eralized models.

Definition 14 (Generalized Probabilistic Model Selection Problem). Let K, IC
be knowledge bases over X such that IC is consistent. Given a cost function

C mapping probability distributions to R and some continuous vector norm k.k,
the generalized probabilistic model selection problem is to compute a generalized
model of minimal cost, that is, to solve the optimization problem

arg min

P2GMod

k.k
IC

C(P ).
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We will restrict our attention to cost functions that yield a unique solution. The
following proposition gives a simple sufficient condition and applies in particular
to maximum entropy reasoning (minimizing negative entropy), minimizing the
least-squares-error to a given prior and minimizing relative entropy to a positive
prior (priors with zero probabilities require a little more care for relative entropy
minimization, see the discussion of absolute continuity and prior-consistency in
(Kern-Isberner, 2001; Potyka, 2015b)).

Proposition 7 (Solvability of Generalized Probabilistic Model Selection Prob-
lem). Let K, IC be knowledge bases over X such that IC is consistent. Let C be

a strictly convex continuous cost function and let k.k be some continuous vector

norm. Then the generalized probabilistic model selection problem has a unique

solution.

Proof. We know from Proposition 2 that GMod

k.k
IC is non-empty, convex and com-

pact. Since minimizing a strictly convex continuous function over such a set guar-
antees the existence of a unique solution, the claim follows.

Generalized probabilistic model selection satisfies common-sense properties
similarly to generalized probabilistic entailment as we will show in the remainder
of this section. If the best model with respect to C and k.k is uniquely determined,
we will denote it by Mk.k

C (K, IC). Similarly, we will denote by MC(K) the best
model with respect to the probabilistic model selection problem.

Proposition 8 (Consistency). Let C be a strictly convex continuous cost function

and let k.k be some vector norm. If K [ IC is consistent, the generalized model

selection problem coincides with the probabilistic model selection problem. That

is,

Mk.k
C (K, IC) = MC(K [ IC).

Proof. The claim follows from item 3 of Proposition 2 because it guarantees that
the feasible regions of the generalized probabilistic entailment problem and the
probabilistic entailment problem are equal if K [ IC is consistent.

Remark 4. For general cost functions, we can state that the best solutions with re-
spect to the generalized model selection problem coincide with the best solutions
with respect to the probabilistic model selection problem whenever K[IC is con-
sistent (the same proof applies). Note also that we do not need any assumptions
on k.k because by definiteness of vector norms, each generalized model must be
a probabilistic model and vice versa.
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When using the negative entropy �H(P ) =

P
!2⌦ P (!) · log(P (!)) as cost

function, we get an independence result similar to generalized entailment.

Proposition 9 (ME-Independence). Let C = �H be the negative entropy and let

k.k be some continuous, dimension-consistent vector norm. Let X1,X2 be disjoint

sets of random variables, let K
i

denote a linear probabilistic knowledge base over

L(X
i

) and let IC
i

be a consistent knowledge base over L(X
i

) for i = 1, 2. Let

P ⇤
i

denote the best generalized model over L(X
i

) with respect to K
i

and let P ⇤

denote the best generalized model over L(X1[X2) with respect to K1[K2. Then

P ⇤
= P ⇤

1 � P ⇤
2 and P ⇤

i

= P ⇤|Xi .

Proof. Let us first note that P ⇤, P ⇤
1 and P ⇤

2 are all well-defined by Proposition
7. In particular, we know from Lemma 6 that P ⇤

1 � P ⇤
2 and P ⇤|Xi are indeed

generalized models. Assume that P ⇤ 6= P ⇤
1�P ⇤

2 . Then �H(P ⇤
) < �H(P ⇤

1�P ⇤
2 ).

We have that

�H(P ⇤
1 � P ⇤

2 ) =

X

!12⌦1

X

!22⌦2

P ⇤
1 (!1) · P ⇤

2 (!2) · log(P ⇤
1 (!1) · P ⇤

2 (!2))

=

� X

!22⌦2

P ⇤
2 (!2)

�
·
� X

!12⌦1

P ⇤
1 (!1) · logP ⇤

1 (!1)
�

+

� X

!12⌦1

P ⇤
1 (!1)

�
·
� X

!22⌦2

P ⇤
2 (!2) · logP ⇤

2 (!2)
�

= �H(P ⇤
1 )�H(P ⇤

2 ).

From the Independence Bound for Entropy (see Yeung (2008), Theorem 2.39), we
have �H(P ⇤

) � �H(P ⇤|X1)�H(P ⇤|X2). Therefore,

�H(P ⇤|X1)�H(P ⇤|X2)  �H(P ⇤
) < �H(P ⇤

1 � P ⇤
2 ) = �H(P ⇤

1 )�H(P ⇤
2 ).

But then �H(P ⇤|X1) < �H(P ⇤
1 ) or �H(P ⇤|X2) < �H(P ⇤

2 ), which contradicts
optimality of P ⇤

1 and P ⇤
2 . Hence, P ⇤

= P ⇤
1 � P ⇤

2 must be true. In particular,
P ⇤
i

= (P ⇤
1 � P ⇤

2 )|Xi = P ⇤|Xi .

We get the following corollary that states that the generalized ME-model co-
incides with the classical ME-model on consistent, independent subsets of the
knowledge base.

Corollary 6 (Consistent ME-Independence). Let C = �H be the negative entropy

and let k.k be some continuous, dimension-consistent vector norm. Let X1,X2 be
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disjoint sets of random variables, let K
i

denote a linear probabilistic knowledge

base over L(X
i

) and let IC
i

be a consistent knowledge base over L(X
i

) for i =
1, 2. Assume further that K1 [ IC1 is consistent. Let P ⇤

1 denote the classical

maximum entropy model over L(X
i

) with respect to K1 and let P ⇤
denote the best

generalized model over L(X1 [ X2) with respect to K1 [K2. Then P ⇤
1 = P ⇤|X1 .

Proof. The claim follows from Proposition 8 and Proposition 9.

Remark 5. Let us emphasize again that dimension-consistency is important for
our Independence properties. When using the Maximum norm, the generalized
model can be different from the ME model after adding independent inconsistent
knowledge. The reason is again that the increased inconsistency value now allows
violating the constraints in the consistent knowledge base similar to Example 9.

As another corollary, we get again a language invariance property.

Corollary 7 (ME Language Invariance). Let C = �H be the negative entropy

and let k.k be some continuous, dimension-consistent vector norm. Let K denote

a linear probabilistic knowledge base over L(X ). Let X 0
denote another set of

random variables and let P ⇤
and Q⇤

denote the generalized best models of K over

L(X ) and L(X [ X 0
). Then P ⇤

(�) = Q⇤
(�) for all formulas � 2 L(X ).

Proof. We know from Proposition 9 that P ⇤
= Q⇤|X . From this, the claim follows

with Lemma 3.

Generalized model selection is again Blaschke continuous if we consider strictly
convex continuous cost functions and continuous vector norms. The key ideas of
the following theorem’s proof are taken from Paris’ proof of continuity of classical
ME reasoning, see (Paris, 1994), Theorem 7.5.

Proposition 10 (Blaschke Continuity). Let K, IC be knowledge bases over X
such that IC is consistent. Let C be a strictly convex continuous cost function and

let k.k be some continuous vector norm. Let (K
i

) be a sequence of knowledge

bases such that K
i

!k.k
IC K. Let (P ⇤

i

) denote the corresponding sequence of best

generalized models with respect to (K
i

) and let P ⇤
be the best generalized model

with respect to K. Then (P ⇤
i

) converges component-wise to P ⇤
.

Proof. For ease of notation, we let G = GMod

k.k
IC (K) and G

i

= GMod

k.k
IC (Ki

).
Our proof takes the key ideas from Theorem 7.5 in (Paris, 1994), which shows a
similar continuity result for consistent knowledge bases. We show that for each
✏ > 0, there is a � > 0 such that kG,G

i

k
b

< � implies kP ⇤ � P ⇤
i

k2 < ✏.
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Consider the set

S = {P 2 G | kP ⇤ � Pk2 �
✏

2

}

of probability functions in G having distance at least ✏2 to P ⇤. By continuity of the
euclidean distance and compactness of G, S is compact. Since C is continuous,
the minimum

⌫ = min {C(P )� C(P ⇤
) | P 2 S}

does exist and is greater than zero because P ⇤ is the unique best model with re-
spect to C.

Note that C is even uniformly continuous because the set of all probability dis-
tributions is compact. Therefore, we can find a � > 0 such that for all probability
distributions P1, P2, kP1 � P2k2 < � implies that |C(P1)� C(P2)| < min { ✏2 ,

⌫

2}.
In particular, we can assume that � < ✏

2 . Then, if kG,G
i

k
B

< �, there is a P 2 G
with kP � P ⇤

i

k2 < � and a P
i

2 G
i

with kP
i

� P ⇤k2 < �. Then

C(P ⇤
) > C(P

i

)� ⌫

2

� C(P ⇤
i

)� ⌫

2

,

C(P ⇤
i

) > C(P )� ⌫

2

� C(P ⇤
)� ⌫

2

and therefore, |C(P ⇤
i

)� C(P ⇤
)| < ⌫

2 . Hence, we can conclude that

|C(P )� C(P ⇤
)|  |C(P )� C(P ⇤

i

)|+ |C(P ⇤
i

)� C(P ⇤
)| < ⌫

2

+

⌫

2

= ⌫.

But by definition of ⌫ this means that P 2 G \ S and therefore kP � P ⇤k2 < ✏

2 .
Hence,

kP ⇤ � P ⇤
i

k2  kP ⇤ � Pk2 + kP � P ⇤
i

k2 <
✏

2

+ � < ✏.

In particular, if the limit of the knowledge bases is consistent, the generalized
best models will converge to the classical best model of the limit.

Corollary 8 (Consistent Blaschke Continuity). Let K, IC be knowledge bases

over X such that (K [ IC) is consistent. Let C be a strictly convex continuous

cost function and let k.k be some continuous vector norm. Let (K
i

) be a sequence

of knowledge bases such that K
i

!k.k
IC K. Let (P ⇤

i

) denote the corresponding

sequence of best generalized models with respect to (K
i

) and let P ⇤
be the best

(classical) model with respect to K. Then (P ⇤
i

) converges component-wise to P ⇤
.

Proof. The claim follows from Proposition 8 and Blaschke Continuity.
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6. Computational Issues

In this section, we will look at solving our generalized reasoning problems
in somewhat more detail. We know from Lemma 2 and the proof of Proposition
7 that both the generalized probabilistic entailment problem and the generalized
probabilistic model selection problem (with appropriately restricted cost function
and norm) can be solved by convex optimization techniques. There are solvers for
convex problems that run in time cubic in the number of optimization variables
and are guaranteed to converge to the global optimum (actually each local op-
timum is globally optimal in a convex optimization problem) (Boyd and Vanden-
berghe, 2004). In this section, we discuss some interesting special cases that can
be solved more efficiently.

6.1. Generalized Probabilistic Entailment

Let us start with the generalized probabilistic entailment problem. Solving this
problem is a two-stage process. We first compute the minimal violation measure
Ik.k
IC (K) by solving optimization problem (4) and then solve the optimization prob-

lem (2). We will show that in several interesting cases, the problems correspond
to linear programs. In practice, such problems can usually be solved in linear time
in the number of optimization variables when using the Simplex algorithm (even
though the worst-case runtime can be exponential) (Matousek and Gärtner, 2007).
However, it is important to remember that the optimization variables correspond
to possible worlds over random variables. Therefore, the number of optimization
variables is exponential in the number of random variables.

We compute Ik.k
IC (K) by solving (4), which is a convex optimization problem.

However, the only non-linear term is the objective function. For the 1- and 1-
norm, we can linearize the objective function in order to obtain a linear program.

Proposition 11. When using a (raised ) w-weighted 1-norm or a w-weighted 1-

norm, Ik.k
IC (K) can be computed by linear programming.
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Proof. In order to compute Ik.k
IC (K), we have to solve the optimization problem

min

(x,✏)2Rn+m
k✏k (7)

subject to AK x  ✏,

AIC x  0,
nX

i=1

x
i

= 1,

x � 0,

✏ � 0.

If we use a (raised ) w-weighted 1-norm, our objective function is
P

m

i=1 |wi

·✏
i

|.
However, since we have the constraint ✏ � 0 and w contains only positive entries,
|w

i

· ✏
i

| = w
i

· ✏
i

for all feasible solutions. Hence, the objective function can be
equivalently written as

P
m

i=1 wi

✏
i

and we have a linear program.
If we use a w-weighted 1-norm, the objective function is max{|w

i

· ✏
i

| | 1 
i  m}, which by the same argument as before is equivalent to max{w

i

· ✏
i

| 1 
i  m}. Let W be the m⇥m-diagonal matrix whose diagonal entries correspond
to the first m entries in w, that is W

i,i

= w
i

for i = 1, . . . ,m. Consider the linear
program

min

(x,y)2Rn+1
y (8)

subject to WAK x  y ·~1,
AIC x  0,

nX

i=1

x
i

= 1,

x � 0,

y � 0,

where ~1 denotes the m-dimensional vector that contains only ones (each row in
the result of AK x has to be less than or equal to y). Note that we only changed the
first and last constraint (and reduced the number of optimization variables). We
show that this new linear program is equivalent to the original one. First suppose
that (x, ✏) is an optimal solution to the original problem. We let y = max{w

i

· ✏
i

|
1  i  m}. Since, ✏ � 0 and w is positive, we have y � 0. Furthermore,
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WAK x  W ✏  y · ~1 by feasibility of (x, ✏) and definition of y. Hence, (x, y)
is a solution to the new problem with the same objective function value and the
minimum of the new problem bounds the minimum of the original problem from
below.

Conversely, suppose that (x, y) is an optimal solution of the new problem.
Let ✏0 = AK x. Let ✏ be defined by ✏

i

= max{✏0
i

, 0} (we replace the negative
components in ✏0 with 0). We have ✏ � 0 and AK x = ✏0  ✏. Hence, (x, ✏) is
a feasible solution for the original problem. For the objective function, we get
k✏k1,w

= max{|w
i

· ✏
i

| | 1  i  m} = max{|(WAK x)
i

| | 1  i  m}  y.
For the sake of contradiction, suppose that k✏k1,w

< y. Then WAK x < y ·
~
1. However, then we could find a y0 2 R such that WAK x  y0 · ~1 < y · ~1.
In particular, y0 < y, contradicting optimality of (x, y). Hence, we must have
k✏k1,w

= y and the minimum of the original problem bounds the minimum of the
new problem from below. Hence, both problems must have the same minimum.

Remark 6. Note in particular that in the linear programming formulation, the
number of optimization variables can only decrease (the number remains equal
for the 1-norm and decreases by m� 1 for the 1-norm).

Note that when we want to perform some form of generalized probabilistic
reasoning, we have to compute the minimal violation value only once. After-
wards, we can reuse it to answer different queries (the minimal violation value
depends only on the knowledge base and not on the query). After having com-
puted the minimal violation value, the generalized probabilistic entailment prob-
lem corresponds to a linear program for all p-norm-related norms as we will show
now.

First note that each optimal solution of (4) is a pair (P, ✏) consisting of a prob-
ability distribution and a violation vector. Even though all these vectors have the
same length (they all satisfy k✏k = Ik.k

IC (K)), there can be different violation vec-
tors in general. However, if we use particular vector norms, the violation vector is
indeed unique. This is in particular true for p-norm-related norms as the following
lemma shows.

Lemma 8 (Unique Violation Vector for p-norm-related norms with 1 < p < 1).
Let k.kw

p

be some p-norm-related norm with 1 < p < 1. Then for all optimal

solutions (P1, ✏1), (P2, ✏2) of (4), we have that ✏1 = ✏2.

Proof. As k.kw
p

is a vector norm, we have kx+yk
p

 kxk
p

+kyk
p

for all x, y 2 Rn

due to item 3 of Definition 5. In particular, if 1 < p < 1 and k.kw
p

= k.k
p

is a
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p-norm, equality holds if and only if there is a non-negative constant � � 0 such
that x = �y, see (Steele, 2004), Problem 9.3.

Let us first consider the case that k.kw
p

= k.k
p

is a p-norm. We know from the
proof of Proposition 2 that the set of optimal solutions of (4) is convex. Therefore,
the convex combination (0.5P1+0.5P2, 0.5✏1+0.5✏2) is also an optimal solution.
Optimality implies that k0.5✏1 + 0.5✏2kp = Ik.kp

IC (K) = k✏1kp = k✏2kp. Hence,
0.5k✏1 + ✏2kp = k0.5✏1 + 0.5✏2kp = 0.5k✏1kp + 0.5k✏2kp, i. e., k✏1 + ✏2kp =

k✏1kp + k✏2kp and equality holds for the Minkowski inequality. Since we assume
1 < p < 1, we can conclude ✏1 = �✏2. From k✏1kp = k✏2kp, it follows that
k✏1kp = k�✏2kp = |�|k✏1kp, i.e., |�| = 1. Since � � 0, we have � = 1 and
therefore ✏1 = ✏2.

Now let k.kw
p

= k.k
p,w

be a weighted p-norm. For all n 2 N, let W
1
p
n

be the
diagonal matrix whose diagonal entries correspond to the p-th root of the first n

entries in w, that is, W
i,i

= w
1
p

i

for i = 1, . . . , n. Then

kxk
p,w

=

p

vuut
nX

i=1

w
i

|x
i

|p = p

vuut
nX

i=1

|w
1
p

i

x
i

|p = kW
1
p
n

xk
p

(9)

for all x 2 Rn. Hence k✏
i

k
p,w

= kW
1
p
m

✏
i

k
p,w

for i = 1, 2 and as before, we can

conclude that W
1
p
m

✏1 = �W
1
p
m

✏2. Since w contains only positive entries, W
1
p
m

is a
diagonal matrix with positive diagonal entries and therefore invertible. Hence, we
can conclude that ✏1 = �✏2 and from here like above that ✏1 = ✏2.

Finally, let k.kw
p

= kxkp
p,w

be a raised w-weighted p-norm. Note that kxkp
p,w

is
just a weighted p-norm k.k

p,w

raised to the power of p. This is a monotone trans-
formation, since all arguments are non-negative. Therefore, the optimal solutions
remain unchanged an the claim follows from the previous result.

The lemma gives us a simple characterization of GMod

k.kp
IC (K) in terms of a

system of linear equations and inequalities as explained in the following corollary.

Corollary 9. Let k.kw
p

be some p-norm-related norm with 1 < p < 1, let K
be some knowledge base and let ✏ be the corresponding minimal violation vector.

Then P 2 GMod

k.kp
IC (K) if and only if AKP  ✏ and AICP  0.

Proof. If P 2 GMod

k.kp
IC (K), there is an ✏0 such that (P, ✏0) is an optimal solution

of (4). But then ✏0 = ✏ by Lemma 8. Hence, AKP  ✏ and AICP  0 by
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feasibility of (P, ✏0). If conversely, AKP  ✏ and AICP  0, then (P, ✏) is a
feasible solution of (4). In particular, (P, ✏) is an optimal solution by definition of
✏. Hence, P 2 GMod

k.kp
IC (K).

We can now give the linear programming formulation of the generalized prob-
abilistic entailment problem for p-norm-related norms.

Proposition 12 (Generalized Probabilistic Entailment Problem for p-norms). The

generalized probabilistic entailment problem for p-norm-related norms can be

solved by linear programming whenever the corresponding minimal violation vec-

tor is known.

Proof. We know from Lemma 2 that the generalized probabilistic entailment prob-
lem can be solved by the following convex programs

min

(x,✏,s)2Rn+m+1
/ max

(x,✏,s)2Rn+m+1
a
�^ x (10)

subject to AK x  s · ✏,
k✏kw

p

 Ik.k
IC (K),

AIC x  0,

a
 

x = 1,
nX

i=1

x
i

= s,

x � 0,

✏ � 0,

s � 0.

Note that the only non-linear term is the second constraint k✏kw
p

 Ik.k
IC (K). How-

ever, k✏kw
p

 Ik.k
IC (K) can equivalently be written as k✏kw

p

= Ik.k
IC (K) because

Ik.k
IC (K) is by definition the minimum value that ✏ can take.

In the case that 1 < p < 1, we know from Lemma 8 that the minimal viol-
ation vector ✏ is unique. As Corollary 9 states, this allows us to characterize the
generalized models by the linear constraints AKx  ✏ and AIC x  0. Therefore,
we can replace the constraints AK x  s · ✏ and k✏kw

p

 Ik.k
IC (K) in the original

problem from Lemma 2 with the single constraint AKx  s · ✏. This yields the
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following linear program:

min

(x,✏,s)2Rn+m+1
/ max

(x,✏,s)2Rn+m+1
a
�^ x (11)

subject to AKx  s · ✏,
AIC x  0,

a
 

x = 1,
nX

i=1

x
i

= s,

x � 0,

✏ � 0,

s � 0.

Like in the proof of Lemma 8, we can check that both optimization problems are
indeed equivalent.

In the case p = 1, we have k✏kw1 =

P
m

i=1 |wi

· ✏
i

|. Since ✏ is restricted to be
non-negative this can be equivalently written as

P
m

i=1 wi

· ✏
i

and so the constraint
k✏kw1 = Ik.k

IC (K) is linear, so that the whole optimization problem is linear.
Finally, consider the case p = 1. Using the same argumentation that we used

in the proof of Proposition 11, we can show that the constraints AK x  s · ✏ and
k✏kw1  Ik.k

IC (K) can be replaced with the constraint AK x  s·Ik.k
IC (K)·~1, where~1

again denotes the m-dimensional vector that contains only ones (note that Ik.k
IC (K)

is the minimal y that linear program (8) in the proof of Proposition 11 can take).
This yields the linear program

min

(x,✏,s)2Rn+m+1
/ max

(x,✏,s)2Rn+m+1
a
�^ x (12)

subject to AK x  s · Ik.k
IC (K) ·~1,

AIC x  0,

a
 

x = 1,
nX

i=1

x
i

= s,

x � 0,

✏ � 0,

s � 0.
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We can again check equivalence to the original optimization problem by using the
same argumentation as in the proof of Lemma 8.

Hence, in order to perform generalized probabilistic entailment with some p-
norm-related norm, we have to solve a convex (linear for p = 1,1) program once
in order to compute the minimal violation value. Afterwards, we have to solve a
linear program for each query. Compare this with classical probabilistic entail-
ment. When using probabilistic entailment, we typically perform a satisfiability
test once (which corresponds to a linear program (Hansen and Jaumard, 2000;
Potyka, 2015b)) and afterwards solve linear programs for each query ((Hansen
and Jaumard, 2000; Lukasiewicz, 1999; Potyka, 2015b)). The number of optimiz-
ation variables for the optimization problems in classical probabilistic entailment
basically corresponds to the number of possible worlds. In generalized probabil-
istic entailment the number increases at most by the size of the knowledge base.
This is often negligible since the knowledge base is typically small compared to
the number of possible worlds. The number of constraints in probabilistic entail-
ment basically corresponds to the size of the knowledge base. The same is true
for the generalized probabilistic entailment problem when using p-norm-related
norms as we saw in the proof of Proposition 12. Therefore, we can expect the
same asymptotic runtime behavior for both classical and generalized probabilistic
entailment when using p-norm-related norms.

6.2. Generalized Probabilistic Model Selection

In the last subsection, we saw that we can simplify the computational problem
for the generalized probabilistic entailment problem when we restrict to certain
norms. For the generalized probabilistic model selection problem, we have to
restrict the cost function, too. The only special case that we looked at in more de-
tail is optimum entropy model selection. Entropy maximization subject to linear
equality constraints is often simplified by deriving a dual unconstrained problem
with the same dimension. This can also be done for generalized optimum entropy
model selection when knowledge bases contain only equality constraints. The
technical details can be found in the proof appendix of (Potyka and Thimm, 2014)
for entropy maximization and in (Potyka, 2015b) for the more general case of rel-
ative entropy minimization subject to a prior distribution. However, when consid-
ering inequality constraints as in this paper, we usually cannot eliminate all con-
straints in the corresponding dual problem. In (Kazama and Tsujii, 2005) a dual
problem is presented that leaves one non-negativity constraint for each inequality
constraint (non-negativity constraints in the primal can be eliminated, however).
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We might apply similar ideas to simplify generalized probabilistic model selection
under relative entropy to a prior in future work. Independent of all this, we note
again that we can expect the same asymptotic runtime behavior for both classical
and generalized model selection because the the size of the optimization problems
does not change significantly.

7. Related Work

The minimal violation value from Definition 7 was originally introduced as an
inconsistency measure in (Potyka, 2014). An inconsistency measure I is a func-
tion that maps a knowledge base to a non-negative real number such that larger
values indicate larger inconsistency (Grant and Hunter, 2013). De Bona and Fin-
ger extended minimal violation measures to interval probabilities and also noted
some relationships between minimal violation measures and Dutch books, see
(Bona and Finger, 2015) for more details. For probabilistic logics, several other
inconsistency measures have been proposed, see, e. g. (Thimm, 2013; Picado-
Muiño, 2011).

In (Potyka and Thimm, 2014) we used generalized models to repair incon-
sistent knowledge bases using the principle of maximum entropy. In (Potyka and
Thimm, 2015) we generalized the propositional probabilistic entailment problem
to the inconsistent case. In this paper, we unified and complemented results from
(Potyka, 2014), (Potyka and Thimm, 2014) and (Potyka and Thimm, 2015), gener-
alized them to linear probabilistic knowledge bases (that include relational logics
as proposed in (Lukasiewicz, 1999; Fisseler, 2008; Kern-Isberner and Thimm,
2010) and probabilistic logics that allow interval probabilities (Bona et al., 2014;
Potyka, 2016)) and more flexible norms than p-norms. The latter is in particular
important for recent applications that we considered in reasoning with priorities
(Potyka, 2015a) and group decision making (Potyka et al., 2016), where one wants
to assign different weights to different beliefs. In particular, we corrected a too
strong continuity claim made in (Potyka and Thimm, 2014) for generalized model
selection under maximum entropy.

Several other methods have been proposed to deal with inconsistent informa-
tion in probabilistic logic. Daniel considered some ideas that are closely related
to generalized reasoning (Daniel, 2009). To deal with inconsistent knowledge,
he first defined the notion of a candidacy function, which assigns a real number
between 0 and 1 to each probability distribution. Intuitively, the candidacy func-
tion assigns 1 to all models of the knowledge base. The value decreases with the
distance of the probability distribution to the hyperplanes that correspond to linear
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constraints in the knowledge base. Note that this approach is different from min-
imal violation values, where we minimize the numerical error of linear constraints
(we minimize the norm of the projection AKP ). However, the best candidates sat-
isfy similar nice properties like the generalized models, namely they form a com-
pact and convex set, which corresponds to the usual models if K is consistent. In
order to reason with inconsistent knowledge, Daniel replaced the models with the
best candidates and selected the best candidate maximizing entropy (this corres-
ponds to another generalization of probabilistic model selection under maximum
entropy). He showed that this approach satisfies several principles, which transfer
Paris principles for inference processes (Paris, 1994) to inconsistent knowledge
bases, see (Daniel, 2009), Proposition 21. These principles include or are closely
related to Language Invariance, Independence (Irrelevant Information) and Weak
Continuity as considered in this work. To define Continuity, Daniel adapted the
Blaschke metric in a similar way as we did, by replacing the models with the best
candidates. Computing best candidates is not discussed in greater detail in Daniel
(2009), so that it remains unclear how expensive the corresponding optimization
problems are and whether there are some computationally attractive choices of the
parameters of candidate-based generalized reasoning.

Reasoning with inconsistent information has also been studied extensively for
classical logics. Some ideas are to consider additional truth values (Priest, 1991;
Arieli et al., 2011), to reason with maximally consistent subsets of the knowledge
base (Benferhat et al., 1997), or to consider alternative conjunctives (Konieczny
et al., 2005).

Another way to deal with inconsistencies is to repair the knowledge base. In
(Rödder and Xu, 1999) three approaches have been proposed to restore consist-
ency in a probabilistic knowledge base. Roughly speaking, the first idea is to relax
the conditionals’ probabilities to intervals, the second to partition the knowledge
base into consistent subsets that get merged afterwards. The third approach is
similar to minimal violation measures restricted to conditionals with point prob-
abilities, but instead of minimizing |P ( �)� pP (�)| for each ground conditional
( | �)[p], roughly speaking, the log-ratio log(

P ( �)
P ( �)

p

1�p

) is minimized. The sys-
tem Heureka (Finthammer et al., 2007) implements several heuristic ideas to re-
store consistency that can be parameterized in different ways. The main ideas are
to remove conditionals or to relax probabilistic constraints. A theoretically ap-
pealing idea is to repair knowledge bases while minimizing the change in the con-
ditionals’ probabilities. This idea has been investigated in (Thimm, 2009, 2013)
for the case of changing point probabilities and in (Picado-Muiño, 2011) for the
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case of relaxing probabilities to intervals. Both frameworks can be seen as spe-
cial cases of a general AGM-like consistency restoration framework that has been
proposed recently (Bona et al., 2016).

For the special case that the knowledge base K at hand is the union of sev-
eral consistent knowledge bases, K =

U
i

K
i

, several fusion and belief merging
approaches have been proposed. The idea in (Kern-Isberner and Rödder, 2003)
is basically to relax the constraints and to use the maximum entropy model af-
terwards to get consistent probabilities for the original knowledge base. Adam-
cik investigated the problem of merging probabilistic knowledge bases in detail
and gave a comprehensive overview of different approaches and their properties
(Adamcik, 2014). Some other recent probabilistic belief merging and revision
approaches can be found in (Wilmers, 2015; Rens et al., 2016).

8. Summary and Discussion

In this paper, we investigated the generalized probabilistic entailment prob-
lem and the generalized probabilistic model selection problem for general lin-
ear probabilistic knowledge bases. We unified and extended previous results for
propositional probabilistic logics and made them in particular available for rela-
tional probabilistic logics as considered in (Lukasiewicz, 1999; Fisseler, 2008;
Loh et al., 2010; Kern-Isberner and Thimm, 2010) for instance.

As we showed, our generalized reasoning approaches generalize the corres-
ponding standard approaches for consistent knowledge bases. In particular, they
are robust with respect to minor inconsistencies (Consistent Continuity) and if
we restrict to dimension-consistent vector norms also with respect to inconsistent
knowledge that is independent of the query (Independence). While Daniel pro-
posed a paraconsistent probabilistic reasoning approach with similar nice logical
properties (Daniel, 2009), the computational properties of his approach remain
unclear (c.f. the discussion in Related Work). In contrast, we can solve our prob-
lems by convex programming techniques in general and several interesting special
cases can even be solved by linear programming.

However, as knowledge bases become larger, we need additional tools to
compute solutions in reasonable time. Whenever we have deterministic integ-
rity constraints, the problem dimension can be reduced significantly, see (Potyka,
2015b), Sections 3.2.2 and 4.2, for a detailed discussion. In general, we can apply
column generation techniques to speed up solving the generalized probabilistic
entailment problem (Georgakopoulos et al., 1988; Hansen and Perron, 2008; Fin-
ger and De Bona, 2011; Cozman and di Ianni, 2013) and ideas similar to belief
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propagation to speed up solving generalized model selection problems when us-
ing optimum entropy as a cost function (Rödder and Meyer, 1996; Schramm and
Ertel, 2000).

When considering relational logics, we can often exploit symmetries and apply
lifted inference techniques (Poole, 2003; Kersting, 2012; Van den Broeck et al.,
2011). In particular, there has been some progress in applying lifted inference
techniques to linear programming problems (Mladenov et al., 2012), which might
be helpful for solving the generalized entailment problem. Besides these compu-
tational issues, future work will be directed towards applications of generalized
probabilistic reasoning in domains like decision theory and group decision mak-
ing (Potyka et al., 2016).
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AppendixA. Notation

1

�

Indicator function p. 6
L(X ) Language over X p. 4
Mod(�) Set of models of � p. 4
a
F

Row vector representing formula F p. 15
AK Constraint matrix corresponding to K p. 6
c Linear probabilistic constraint p. 5
C Cost function on probability distributions p. 9
IC Integrity constraints p. 11
Ik.k
IC (K) Minimal violation value of K p. 12

GMod

k.k
IC (K) Generalized models of K wrt. IC and k.k p. 13

Mk.k
C (K, IC) Best model of K and IC wrt. C and k.k p. 35

MC(K) Best model of K and IC wrt. probabilistic entailment p. 35
|= General satisfaction relation p. 4
|=pe Probabilistic entailment p. 9
|=gpe Generalized probabilistic entailment p. 14
k.k Vector norm p. 10
k.k

p

p-norm p. 10
k.k1 Manhattan norm p. 10
k.k2 Euclidean norm p. 10
k.k1 Maximum norm p. 10
k.k

p,w

w-weighted p-norm p. 11
k.kp

p,w

Raised w-weighted p-norm p. 11
k.k1,w

w-weighted 1-norm p. 11
kS1, S2kB Blaschke distance between sets S1, S2 p. 31
kK1,K2kB Generalized Blaschke distance between knowledge

bases K1, K2

p. 31

! Possible world in L(X ) p. 4
!|X 0 Restriction of ! to X 0 p. 21
(!1,!2) Combination of !1 and !2 p. 21
⌦ Set of possible worlds p. 4
P Probability distribution over ⌦ p. 5
P |X 0 Marginal distribution of P wrt. X 0 p. 26
P1 � P2 Production distribution p. 26
(� |  ) Conditional query p. 8
r
c

Row vector representing constraint c p. 6
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X = {X1, . . . , Xn

} Random variables p. 4
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