
Heureka: A General Heuristic Backtracking
Solver for Abstract Argumentation

Nils Geilen and Matthias Thimm

Institute for Web Science and Technologies,
Universität Koblenz-Landau, Germany

Abstract. The heureka solver is a general-purpose solver for various
problems in abstract argumentation frameworks pertaining to complete,
grounded, preferred and stable semantics. It is based on a backtracking
approach and makes use of various heuristics to optimize the search.

ευρηκα! ευρηκα! – I have found it! I have found it!

– Archimedes of Syracuse (287–212 BC)

1 Introduction

An abstract argumentation framework (AAF) as defined by Dung [3] is a tuple
Γ = (A,R) where A is a set of arguments and R ⊆ A2 an attack relation
between arguments. An attack a → b ∈ R models that argument a defeats
argument b. For any argument set E ⊆ A, let E+ be the set of arguments which
are attacked by an element of E and let E− be the set of arguments which attack
an element of E. An AAF Γ is interpreted through the use of extensions, i. e.,
sets of arguments that provide a coherent view on the argumentation represented
by Γ . An extension E ⊆ A is conflict-free iff there are no a, b ∈ E with a → b.
An extension E is stable iff it is conflict-free and for every b ∈ A \ E there is
a ∈ E with a→ b. Other notions of extensions include complete, grounded, and
preferred extensions, see [3] for the formal definitions.

heureka is a software system that implements a direct backtracking ap-
proach for solving reasoning problems with respect to stable, complete, grounded,
and preferred semantics. The backtracking approach makes use of a variety of
heuristics to dynamically (re-)order the arguments to minimize the backtracking
steps. heureka is able to solve the problems of

– enumerating all extensions (EE),

– determining a single extension (SE),

– checking whether an argument is part of at least one extension, i. e., whether
it is creduously justifiable (DC), and

– checking whether an argument is part of every extension, i. e., whether it is
sceptically justifiable (DS)

with respect to the four mentioned semantics. heureka is written in C++ and
available under the LGPL v3.0 licence on GitHub1.

In the remainder of this paper, we describe the architecture of heureka as it
has been submitted to the Second International Competition on Computational
Models of Argumentation (ICCMA’17)2. Note that a slightly shorter version of
this paper has also been submitted as a system description to the competition.

2 Backtracking Algorithm

heureka consists of a family of backtracking algorithms, one for each com-
plete, preferred, and stable semantics which are similar to the algorithm defined
in [5] but use dynamic heuristics to (re-)order how arguments are processed.
The concrete algorithms differ only slightly so we focus our presentation here
on the stable semantics and, in particular, on the task of computing all stable
extensions.

At any time during the execution, a labelling function Lab, which assigns to
each argument either the value IN if it should be contained in the extension,
OUT if it should be ruled out, or UNDEC if it is undecided, is maintained by
the algorithm that keeps track of the current (partial) extension. A fourth label
(BLANK) is used to indicated that an argument is not labelled yet. Let further
IN(Lab) be the set of all arguments labelled IN by Lab, and therefore the current
solution. In a first step, the grounded extension EGR is computed using a purely
iterative algorithm which does not require backtracking [4] and an intial labelling
is constructed. For an AAF Γ = (A,R) with the grounded extension EGR let
the initial labelling Labinit : A → {IN,OUT,UNDEC,BLANK} be defined as

Labinit(a) =


IN if a ∈ EGR

OUT if a ∈ E+
GR

UNDEC if a→ a

BLANK otherwise

Using a specific heuristic (see next section) a new argument a is selected and
set to IN in Lab. Setting this argument to IN may require that other arguments
have to be rejected (because they are attacked by a) or need to be set to IN
as well (because all attackers of them are now attacked by some IN-labelled ar-
gument), and so on, see [5] for the corresponding lookahead strategies. Those
arguments are then marked correspondingly in Lab. This step is repeated until
either a stable extension has been determined or a contradiction occurs (an ar-
gument is labelled with two different labels). In the latter case, the algorithm
backtracks and rejects an argument previously accepted. Algorithm 1 shows a
shortened version of this procedure. The functions Set In and Set Undec set
the labelling of the current argument to IN or undec, respectively, and propa-
gate the changes following the mentioned lookahead strategies. For example all

1 https://github.com/nilsgeilen/heureka
2 http://www.dbai.tuwien.ac.at/iccma17

https://github.com/nilsgeilen/heureka
http://www.dbai.tuwien.ac.at/iccma17

Algorithm 1 Enumerate All Stable Extensions

Input: Γ = (A,R) AAF
h heuristic
Labinit initial labelling

Output: EST ⊆ 2A stable extensions

1: Enumerate Extensions(Labinit)

2: function Set In(Lab, a)
3: Lab(a)← IN
4: for all b ∈ {a}− do
5: if not Set Undec(Lab, b) then
6: return false
7: for all b ∈ {a}+ do
8: Lab(b)← OUT

9: for all c ∈ ({a}+)+ do
10: if {c}− ⊆ IN(Lab)+ then
11: if Lab(c) = UNDEC then
12: return false
13: else if not Set In(Lab, c) then
14: return false
15: if Is Stable(Lab) then
16: add IN(Lab) to EST
17: return false
18: else return true

19: function Set Undec(Lab, a)
20: Lab(a)← UNDEC
21: if |{a}− \ IN(Lab)+| = 1 then
22: find b ∈ {a}− \ IN(Lab)+
23: if not Set In(Lab, b) then
24: return false
25: return true

26: procedure Enumerate Extensions(Lab)
27: let h choose next argument a, if there is none, stop
28: if Lab(a) = BLANK then
29: Lab′ ← Lab
30: if Set In(Lab′, a) then
31: Enumerate Extensions(Lab′)
32: if Set Undec(Lab, a) then
33: Enumerate Extensions(Lab)
34: else Enumerate Extensions(Lab)

b a

d

c

e

step
labelling

IN OUT UNDEC

1. {a} ∅ ∅
2. {a} ∅ {b}
3. {a, c} ∅ {b}
4. {a, c} {b, d} {e}
5. {a} ∅ {b, c}
6. {a, d} ∅ {b, c}
7. {a, d} {b, c, e} ∅

Fig. 1. AAF Γ (left) and algorithm steps (right) from Example 1; arguments not
present in any set are BLANK

arguments attacked ba an argument labelled IN are set to OUT. At the end
of Set In, the algorithm checks whether the current extension, i. e., the set of
IN-labelled arguments in Lab, is stable, then it is reported as a stable extension
and the algorithm backtracks as the current branch cannot contain any more
extensions.

Example 1. Consider the AAF Γ = (A,R) depicted in Figure 1 (left). Assume
our heuristic function determines the following order of arguments: (a, b, c, d, e).
In the first step, we determine that the grounded extension is empty and that
there is no self-attacking argument, so we start with an empty labelling (all
arguments are blank).

1. decision: a is picked by the heuristic and set to IN

2. as a consequence of step 1, all attackers/attackees of a are set to UNDEC/
OUT respectively, {a} is not stable

3. decision: c is picked by the heuristic and set to IN

4. as a consequence of step 3, all attackers/attackees of c are set to UNDEC/
OUT respectively, {a, c} is not stable

5. there are no more arguments which are still undecided, so the algorithm
backtracks to the last decision in step 3 and sets c to OUT

6. decision: d is picked by the heuristic and set IN

7. as a consequence of step 6, all attackers/attackees of d are set to UNDEC/
OUT respectively, {a, d} is stable ⇒ stop

The backtracking algorithms for preferred and complete semantics are simi-
lar to the one for stable semantics. Reasoning problems pertaining to credu-
lous/sceptical justification are solved by the same algorithms but with different
termination criteria and slightly different initial steps.

3 Heuristics

While it is clear that the backtracking approach outlined before is a sound and
complete procedure to enumerate extensions, its performance is highly dependent
on the order in which arguments are processed. Observe that if this order is
perfect, i. e., all arguments within the final extension are processed first, then
no backtracking is needed and the algorithm has polynomial runtime. However,
this runtime performance cannot, of course, be guaranteed but the choice of the
heuristic used in ordering the arguments can deeply influence the runtime in
general. heureka comes with a series of different heuristics for this purpose.

In general, a heuristic h is a function h : 2A ×A → R that maps the current
partial extension E ⊆ A, i. e., the set of IN-labelled arguments in Lab, and an
argument a ∈ A to a real number h(E, a). A large value h(E, a) indicates that a
should be likely included in the extension E and should be processed earlier than
arguments with lower score. Some of our heuristics are defined independently of
E and therefore need not to be recomputed after every modification of E. In
general, however, heureka allows for dynamic heuristics that are updated after
every step.

A simple example of such a heuristic is the number of undefeated aggres-
sors, i. e., the number of arguments which attack a but are not defeated by E.
The number of undefeated aggressors hUA(E, a) should be used as a negatively
weighted component in a compound heuristic as every aggressor increases the
vulnerability of an argument.

hUA(E, a) =
∣∣{a}−\E+

∣∣
Another example which is independent of E is the ratio of an argument’s in-
degree and out-degree:

h÷deg(E, a) =
|{a}+|+ ε

|{a}−|+ ε
with ε ∈ R

Path-based heuristics have proven useful in many cases. Let d+
i (a) be the

number of paths of length i originating in a and let d−i (a) be the number of
paths of length i ending in a. The path-based components h+

path and h−path map
an argument to a combination of its outgoing paths or ingoing paths respectively.

h+
path(E, a) =

k∑
i=1

αid+
i (a)

h−path(E, a) =

k∑
i=1

βid−i (a)

These heuristics can be combined into more complex path-based heuristics like
hΣ

path = h−path + h+
path or hΠ

path = (−1) · (h−path + ε) · (h+
path + ε).

Further heuristics have been implemented on top of well-known graph metrics
such as betweenness centrality, eigenvector centrality, and matrix exponential.

Another approach are SCC-based heuristics, which order arguments according to
the ordering number of the strongly connected component, which they are part
of, thus implementing ideas on SCC-recursiveness [1]. On top of the individual
heuristics, heureka also allows heuristics to be combined arithmetically.

For ICCMA’17, we fixed a heuristic for every problem based on a small
experimental evaluation. For all tasks except SE-ST (enumerating some stable
extension) we used the heuristic h1, i.e., h+

path with fixed parameters α = 0.5
and k = 3, defined as

h1(E, a) =

3∑
i=1

d+
i (a)

2i

This heuristic shows the power of an argument to defend and defeat arguments.
For the task SE-ST we used the heuristic h2, which combines h+

path with h−path

and hUA.

h2(E, a) = h1(E, a) +

3∑
i=1

d−i (a)

(−2)i
− |{a}

−\E+|
2

This heuristic is influenced by the matrix exponential which has been suggested
for this use in [2].

Later a systematic evaluation of the implemented heuristics has been con-
ducted. During this evaluation h÷deg has proven most useful for solving problems

under stable semantics while hΠ
path worked best when solving problems under

complete or preferred semantics. For some graphs the performance could be
substantially increased by adding an SCC-based component to the heuristic. In
future work, heuristics could be explored, which also discriminate between OUT
and UNDEC arguments intead of only analysing the partial extension.

4 Summary

We presented heureka, a general-purpose argumentation solver based on the
backtracking paradigm. The solver is backed by a number of heuristics that
(dynamically) order the arguments of an abstract argumentation framework to
minimize the number of necessary backtracking steps. During ICCMA’17, all
results returned by heureka have been correct. It landed in the center field
for most tasks, while it was the fastest to find the grounded extension. Current
and future work comprises analytical and empirical evaluation of the solver and
its heuristics, as well as the development of new heuristics and combinations
thereof.

References

1. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for ar-
gumentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

2. Corea, C., Thimm, M.: Using matrix exponentials for abstract argumentation. In:
Proceedings of the First Workshop on Systems and Applications of Formal Argu-
mentation (SAFA’16). pp. 10–21 (September 2016)

3. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321 – 357 (1995)

4. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for argumentation semantics: la-
beling attacks as a generalization of labeling arguments. Journal of Artificial Intel-
ligence Research 49, 635–668 (2014)

5. Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms
for abstract argumentation. International Journal of Approximate Reasoning 78,
265–282 (2016)

	Heureka: A General Heuristic Backtracking Solver for Abstract Argumentation

