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Abstract. This paper deals with strategical issues of arguing agents in
a multi-agent setting. We investigate different scenarios of such argu-
mentation games that differ in the protocol used for argumentation, i. e.
direct, synchronous, and dialectical argumentation protocols, the aware-
ness that agents have on other agents beliefs, and different settings for
the preferences of agents. We give a thorough investigation and classifica-
tion of these scenarios employing structured argumentation frameworks
which are an extension to Dung’s abstract argumentation frameworks
that give a simple inner structure to arguments. We also provide some
game theoretical results that characterize a specific argumentation game
as strategy-proof and develop some argumentation selection strategies
that turn out to be the dominant strategies for other specific argumen-
tation games.

1 Introduction

The study of computational models of argumentation [4] is a relatively novel
research area in the field of artificial intelligence and non-monotonic reasoning
with logic-based formalisms for knowledge representation. There are a lot of ap-
proaches to model argumentation in different kinds of logics, e. g. classical logic
[5] or defeasible logic [19, 12] and also abstract formalizations of argumentation
[11] are widely used to talk about computational argumentation in general. In
abstract argumentation, arguments are represented as atomic entities and the
interrelationships between different arguments are modeled using an attack re-
lation. Abstract argumentation has been thoroughly investigated in the past ten
years and there is quite a lot of work on, e. g. semantical issues [3] and extensions
of abstract argumentation frameworks [16, 2].

In the context of agent and multi-agent systems, there are mainly two ap-
plications of formal argumentation. First, using argumentation techniques as a
non-monotonic reasoning process within a single agent and second, using argu-
mentation in dialogues between different agents in order to realize persuasion,
cooperation, planning, or general conflict solving. Here, we focus on the second
application where reasoning is performed involving the whole system of agents,
see e. g. [13, 1, 7, 25] for formalizations. In a dialogue, agents take turns in bring-
ing up arguments for some given claim and depending on the interrelationships



of the arguments the claim is accepted or rejected by the agents (either individ-
ually or jointly). Up until recently, strategic issues in argumentation dialogues
have been mostly ignored with few exceptions, e. g. [22]. By considering game
theoretical aspects in argumentation dialogues [20] the interest in strategies for
the selection of arguments and the general connection of game theory and argu-
mentation has grown. From the point of view of game theory, an argumentation
dialogue can be represented as a strategic game involving a set of self-interested
agents and in choosing the “right” arguments agents can influence the outcome
of the argumentation and reach a more desirable result according to their own
preferences. In [20, 21, 17] Rahwan et al. investigate direct argumentation mech-
anisms in which agents have to state all arguments they wish at once. Under
specific circumstances of the underlying argumentation framework they were
able to prove strategy-proofness, i. e. the dominant strategy of each agent is to
truthfully report all their arguments. Besides this scenario of direct argumen-
tation there are other formalizations of specific argumentation games, e. g. [22,
7]. But up till now, to our knowledge there has been no comprehensive overview
on the different argumentation settings and the different scenarios where agents
can argue with each other.

The contribution of this paper is twofold. The main contribution lies in a clas-
sification of the different argumentation games agents can play within a multi-
agent setting. We make a first attempt to characterize argumentation games
by means of the game protocol, the awareness of the agents on other agents’
beliefs, and the structure of the preferences of the agents. We use structured
argumentation frameworks, a novel approach which generalizes abstract argu-
mentation frameworks, to model argumentation between different agents. The
second contribution lies in generalizing the strategy-proofness result of [20] and
investigating several other settings for argumentation games in terms of the
strategical issues involving argument selection.

This paper is a slightly extended version of a previously published paper [24]
and is organized as follows. In Section 2 we give a brief overview on abstract
argumentation and introduce the novel approach of structured argumentation.
We continue in Section 3 with applying structured argumentation onto a multi-
agent setting. Section 4 develops a classification of argumentation games in the
multi-agent setting in terms of game protocol, awareness, and agent types. We
investigate several strategical issues in some instances of argumentation games
in Section 5 and conclude in Section 6.

2 Preliminaries

We first give a brief overview on abstract argumentation frameworks [11] and
continue by introducing structured argumentation frameworks which extend ab-
stract argumentation frameworks and are the means to model argumentation
games in this paper.



2.1 Abstract Argumentation

Abstract argumentation frameworks [11] take a very simple view on argumenta-
tion as they do not presuppose any internal structure of an argument. Abstract
argumentation frameworks only consider the interactions of arguments by means
of an attack relation between arguments.

Definition 1 (Abstract Argumentation Framework). An abstract argu-
mentation framework AF is a tuple AF = (Arg, attacks) where Arg is a set of
arguments and attacks is a relation attacks ⊆ Arg × Arg.

For two argumentsA,B ∈ Arg the relation (A,B) ∈ attacks means that argument
A attacks argument B. Abstract argumentation frameworks can be concisely
represented as directed graphs, where arguments are represented as nodes and
edges model the attack relation.

Example 1. Consider the abstract argumentation framework AF = (Arg, attacks)
depicted in Figure 1. Here it is Arg = {A1,A2,A3,A4} and attacks = {(A1,A2),
(A2,A3), (A2,A4), (A3,A2), (A3,A4)}.

A1

A2 A3

A4

1

Fig. 1. A simple argumentation framework

Semantics are given to abstract argumentation frameworks by means of exten-
sions. An extension E of an AF = (Arg, attacks) is a set of arguments E ⊆ Arg
that gives some coherent view on the argumentation underlying AF. In the lit-
erature [11, 8] a wide variety of different types of extensions has been proposed.
All these different types of extensions require some basic properties as conflict-
freeness and admissibility. A set S ⊆ Arg is conflict-free if and only if there
are no two arguments A,B ∈ Arg with (A,B) ∈ attacks. An argument A ∈ Arg
is acceptable with respect to a set of arguments S ⊆ Arg if and only if for ev-
ery argument B ∈ Arg with (B,A) ∈ attacks there is an argument C ∈ S with
(C,B) ∈ attacks. A set S ⊆ Arg is admissible if and only if it is conflict-free and
every argument a ∈ S is acceptable with respect to S.

Extensions of an abstract argumentation framework can be described using
the characteristic function FAF(S) = {A ∈ Arg | A is acceptable wrt. S} defined
for sets S ⊆ Arg.



Definition 2 (Extensions). Let AF = (Arg, attacks) be an abstract argumen-
tation framework and S ⊆ Arg an admissible set.

– S is a complete extension if and only if S = FAF(S).
– S is a grounded extension if and only if it is a minimal complete extension

(with respect to set inclusion).
– S is a preferred extension if and only if it is a maximal complete extension

(with respect to set inclusion).
– S is a stable extension if and only if it is a complete extension and attacks

each A ∈ Arg \ S.

Example 2. We continue Example 1. As FAF({A1,A3}) = {A1,A3} the set
{A1,A3} is a complete extension. Furthermore it is the only complete exten-
sion and also grounded, preferred, and stable.

Note that the grounded extension is uniquely determined and always exists [11].

2.2 Structured Argumentation

In the following, we introduce structured argumentation frameworks which ex-
tend Dung’s abstract argumentation frameworks and are a slightly modified
variant of dynamic argumentation frameworks [23]. In structured argumenta-
tion frameworks arguments are built using a very simple propositional language,
so let Prop denote a finite and fixed set of propositions. The basic structure
for structured argumentation frameworks are basic arguments which represent
atomic inference rules by connecting some set of propositions (the support) to
another proposition (the claim).

Definition 3 (Basic Argument). Let α1, . . . , αn, β ∈ Prop be some proposi-
tions with β /∈ {α1, . . . , αn}. Then a basic argument A is a tuple A = ({α1, . . . ,
αn}, β). We abbreviate supp(A) = {α1, . . . , αn} (the support of A) and cl(A) = β
(the claim of A).

For the rest of this paper, let U be some fixed and finite set of basic arguments,
called the universal set of basic arguments. As such, U represents all possible
basic arguments under consideration. To keep things simple, we assume that
U does not contain any cyclic dependencies, i. e. there is no infinite sequence
A1,A2, . . . ∈ U with cl(Ai) ∈ supp(Ai+1) for all i > 0. Together with an attack
relation →⊆ U × U the set of basic arguments form a structured argumentation
framework (SAF) F = (U,→).3

Example 3. Consider the SAF F1 = (U,→) given by

U = { A1 = (∅, a), A2 = ({a}, b), A3 = (∅, c)
A4 = (∅, d), A5 = ({d}, e), A6 = ({b}, f)
A7 = (∅, g) }

3 Although SAFs have the same structure as abstract argumentation frameworks, we
deliberately use different notations to avoid ambiguity.



and

→ = { (A3,A2), (A2,A4), (A5,A6),

(A5,A7), (A6,A7), (A7,A5) } .

The rough structure of F1 is depicted in Figure 2, where the attack relation is
represented by solid arrows and “support” by dashed arrows. Notice that Fig-
ure 2 does not contain all the information represented by F1 as the propositions
the arguments relate to have been omitted.

A1 A2

A3

A4 A5

A6

A7

1

Fig. 2. The SAF F1

A set S ⊆ U is conflict-free if and only if there are no two basic arguments
A,B ∈ S with A → B. A finite sequence [A1, . . . ,An] of basic arguments is
conflict-free if and only if {A1, . . . ,An} is conflict-free. Basic arguments are
used to form inference chains called argument structures.

Definition 4 (Argument Structure). Let S ⊆ U be a set of basic arguments
and A ∈ S a basic argument. An argument structure AS for A with respect
to S is a minimal (with respect to set inclusion) conflict-free sequence of basic
arguments AS = [A = A1, . . . ,An] with {A2, . . . ,An} ⊆ S such that for any
Ai ∈ AS and for any α ∈ supp(Ai) there is an Aj ∈ AS with j > i and
cl(Aj) = α (for 1 ≤ i, j ≤ n). Let ArgStructS(A) denote the set of argument
structures for A with respect to S and let ArgStructS =

⋃
A∈S ArgStructS(A) be

the set of all argument structures with respect to S.

For an argument structure AS = [A1, . . . ,An] let top(AS) = A1 denote the
first basic argument in AS. The attack relation → on basic arguments can be
extended on argument structures by defining AS1 → AS2 if and only if there is
an A ∈ AS2 with top(AS1)→ A for two argument structures AS1 and AS2. An
argument structure AS1 indirectly attacks an argument structure AS2, denoted
by AS1 ↪→ AS2 if AS1 → . . .→ AS2 with an odd number of attacks.



Example 4. We continue Example 3. In F1 the following sequences are argument
structures

AS1 = [A2,A1] AS2 = [A5,A4]

AS3 = [A6,A2,A1] AS4 = [A7]

Due to A2 → A4 it holds AS1 → AS2. Similarly, it holds AS2 → AS3, AS3 →
AS4, AS2 → AS4, AS4 → AS2, and especially AS1 ↪→ AS4.

Using the extended attack relation, a structured argumentation framework F
induces an abstract argumentation framework AFF = (ArgF, attacksF) with
ArgF = ArgStructU and attacksF = {(AS1, AS2) | AS1 → AS2}. Let Sem denote
one of the Dung-style semantics, cf. Subsection 2.1. Given a structured argu-
mentation framework F and a semantics Sem the output of F denotes the set
of all conclusions acceptable with the semantics Sem in the induced abstract
argumentation framework AFF, cf. [9]. More precisely, if E1, . . . , En are the ex-
tensions of AFF under Sem, then OutputSem(F) = {α ∈ Prop | ∀i : ∃AS ∈ Ei :
cl(top(AS)) = α}.
Example 5. A graphical representation of the induced abstract argumentation
framework AFF1 of F1 from Example 3 is depicted in Figure 3. Note that we
abbreviated some argument structures by their names introduced in Example 4.
The grounded extension EG of AFF1

computes to EG = {[A1], [A3], [A4], AS2}
and therefore Outputgrounded(F1) = {a, c, d, e}.

[A1] AS1

[A3]

[A4] AS2

AS3

AS4

1

Fig. 3. The induced abstract argumentation framework of F1 from Example 3

Structured argumentation frameworks are a clear generalization of abstract ar-
gumentation frameworks as every abstract argumentation framework can be cast
into a structured argumentation framework while retaining semantics.

Definition 5 (Equivalent Structured Argument Framework). Let AF =
(Arg, attacks) be an abstract argumentation framework. For every argument A ∈



Arg introduce a new proposition A ∈ Prop. The equivalent structured argumen-
tation framework FAF = (U,→) to AF is defined as

U = {(∅,A) | A ∈ Arg}
→ = {((∅,A), (∅,B)) | (A,B) ∈ attacks}

The following theorem states that structured argumentation frameworks are a
clear generalization of abstract argumentation frameworks and can easily be
verified.

Theorem 1. Let AF be an abstract argumentation framework with extensions
E1, . . . , En under some semantics Sem and let E′

1, . . . , E
′
m be the extensions

of AFFAF
under Sem. Then there is bijective function T : {E1, . . . , En} →

{E′
1, . . . , E

′
m} such that T ({A1, . . . ,Ak}) = {(∅,A1), . . . , (∅,Ak)} for every Ei =

{A1, . . . ,Ak}, 1 ≤ i ≤ n. In particular, it is n = m.

So far we have motivated the use of structured argumentation frameworks as a
computational model for argumentation. We now turn to the setting of argu-
mentation in dialogs. Usually in a multi-agent setting, the universal set of basic
arguments U is unknown to all agents because of lack of expertise or just lack of
knowledge. When considering a multi-agent setting, every agent may only have
a partial view on U and the attack relation.

Definition 6 (View). A view VF on a structured argumentation framework
F = (U,→) is a structured argumentation framework VF = (U ′,→′) with U ′ ⊆ U
and →′= {(A1,A2) ∈→| A1,A2 ∈ U ′}.
We will omit the subscript of VF when the SAF F is clear from context. Defini-
tion 6 implies that, in general, games played on some structured argumentation
framework are incomplete as not every possible move of an agent might be known
by other agents. Nonetheless, when a move is played (i. e. an argument has been
put forward) all agents agree on the attack relation. So with respect to the attack
relation the information distributed among the agents is complete.

3 The Multi-Agent Setting

The scenario we consider can be intuitively described as follows. At the beginning
every agent has some view on the underlying SAF F and some preferences over
the output of the argumentation. The common view considered by all agents
as starting point is empty and the agents take turn by bringing up some basic
arguments from their own view and incorporating them into the common view.
When no agent can bring up more arguments the argumentation ends and an
abstract argumentation framework is computed with respect to the final common
view. Lastly, this abstract argumentation framework is used to compute the
output of the argumentation given some predefined semantics. In the following,
we formalize this intuition.

The multi-agent setting is divided into two parts, one describing the basic
contents of the scenario, namely the underlying argumentation framework and
the agents, and one describing the dynamic part of an evolving argumentation.



Definition 7 (Structured Argumentation System). A structured argu-
mentation system (SAS) Π is a tuple Π = (F, Ag) with a structured argumen-
tation framework F and a set of agent identifiers Ag.

As a simplification we assume that the universal set of basic arguments U of F
contains exactly the union of the basic arguments appearing in the views of the
agents. Hence, any basic argument in U is known by at least one agent. This is
not a restriction as an argument not appearing in any view cannot be used at
all. In particular, we do not allow agents to “make up” arguments as in [21].

A SAS Π describes the functionality and the underlying language of an ar-
gumentation game. Dynamism is introduced by considering evolving states of
Π. At any time the state of Π is determined by a current common view V 0, the
views of each agent V i, and the outcome of the argumentation.

Definition 8 (State). A state ΓΠ of Π = (F, Ag) with Ag = {A1, . . . , An}
is a tuple ΓΠ = (V 0, {V 1, . . . , V n}, O) with views V 0, . . . , V n on F, and a set
O ⊆ Prop. Let ∆Π denote the set of all states of Π.

We will omit the superscripts Π when Π is clear from context. The final com-
ponent O of a state Γ denotes the output of the argumentation if Γ is the final
state. If the final state has not been reached yet, we set O = nil, where nil is a
special identifier denoting no output. For a state Γ = (V 0, {V 1, . . . , V n}, O) we
denote V i(Γ ) = V i, and O(Γ ) = O. The initial state of a SAS Π is denoted by
ΓΠ0 with O(ΓΠ0 ) = nil. The state of a SAS Π evolves over time when agents bring
up new basic arguments from their own views. The protocol of an argumentation
game might restrict an agent to only bring up one basic argument at a time or
all basic arguments he wants at once. We will elaborate some of these possible
protocols in the next section. In the general case, if an agent has to take turn
in an argumentation he does so by using its selection function. Given a common
view of a SAF and an agent’s own view a selection function selects a set of basic
arguments of the agent’s view to come up with. Let P(S) denote the power set
of a set S.

Definition 9 (Selection Function). Let Ak be an agent identifier. A selection
function selAk for Ak is a function selAk : ∆ → P(U) such that selAk(Γ ) ⊆
(Uk \ U0) for any Γ ∈ ∆ with V k(Γ ) = (Uk,→k) and V 0(Γ ) = (U0,→0).

The condition selAk(Γ ) ⊆ (Uk \ U0) ensures that the agent brings up new ba-
sic arguments that are not already part of the common view. Notice also that
an agent may bring up no basic arguments at all via selAk(Γ ) = ∅. Intuitively
spoken, a selection function implements the strategy of an agent in an argumen-
tation in a game theoretical sense. As said before, in our framework the strategy
of an agent only allows for hiding arguments but not for making up new argu-
ments, cf. [17]. To our understanding this is not a drawback as arguments that
could be made up by an agent could also be integrated in the agent’s view from
the beginning. From the perspective of knowledge representation this is a more
adequate formalization as making up arguments requires the agent to have an
understanding of rational inference chains (i. e. atomic arguments) to support
their claim.



In game theory, the performance of an agent’s strategy is evaluated by using
the agent’s preferences on the outcomes of a game. As in our framework the
outcome of the argumentation game is determined by the output of the final
common view of the underlying F the agent’s utility is determined by its util-
ity function which maps sets of propositions, i. e. possible outcomes, to natural
numbers, thus describing a ranking on the output.

Definition 10 (Utility Function). An utility function utilA for an agent iden-
tifier A is a function utilA : P(Prop)→ N.

An agent A with a utility function utilA prefers the outcome (i. e. the output)
L1 ⊆ Prop over L2 ⊆ Prop if utilA(L1) > utilA(L2). By taking a selection function
and an utility function together we obtain the basic characteristics of an agent.

Other agents observe new basic arguments and integrate these in their own
views respectively. As a convenience we abbreviate this operation as follows.

Definition 11 (View Update). Let V = (U ′,→′) be a view on F = (U,→)
and A ∈ U a basic argument. The view update of V with A is a view V ′ = V ⊗A
on F with V ′ = (U ′′,→′′) defined as U ′′ = U ′ ∪ {A} and

→′′ =→′ ∪{(A,B) ∈→| B ∈ U ′} ∪ {(B,A) ∈→| B ∈ U ′}

Definition 11 suggests that agents are fully aware of attacks between known
arguments. This means that when agents incorporate new basic arguments into
their view, all attacks between this argument and arguments already known are
incorporated as well. This assumption corresponds to the assumption of perfect
information in e. g. [22]. For a set of basic arguments A = {A1, . . . ,An} ⊆ U we
define V ⊗ A = (. . . ((V ⊗A1)⊗A2)⊗ . . .)⊗An.

4 Argumentation Games

The type of argumentation game that agents play directly influences the strate-
gies agents should use in order to obtain the best outcomes. In [20, 21, 17] Rahwan
et. al. investigate mechanism design techniques [14] in order to determine suit-
able mechanisms, i. e. types of games, for abstract argumentation. For a special
case of mechanism and a special type of agents they were able to identify this
scenario as a strategy-proof game. As such, the best strategy for the agents is
to be truthful about their views and bring up all arguments they know of. In
their works, Rahwan et. al. focus on direct mechanisms, i. e., mechanisms where
every agent reports his arguments at once without having the possibility to react
on other agents’ arguments. Restricting the attention on these simple games is
not as limiting as it seems. Due to the revelation principle—a well-known result
in mechanism design—if some social choice function can be implemented with
some equilibrium by some mechanism it can also be implemented by a direct and
truthful mechanism [20]. Roughly, this means that when designing a game one
does not lose expressive power by just considering direct mechanisms. Instead
one gains the additional advantage that agents have to be truthful. Nonetheless,



there is some criticism on the revelation principle, especially when it comes to
natural representation of games or computational issues. Implementing a game
in a direct fashion might put a computational intractable task onto the evaluator
of the game or create an exponential overhead in communication [10]4. Further-
more, as a direct mechanism expects an agent to (truthfully) report its type,
e. g. in our framework his arguments, confidentiality issues might be considered
as well [6]. Hence, besides direct mechanisms we also investigate more natural
forms of argumentation dialogs in the following. We obtain a similar result as in
[20] of strategy-proofness for a special scenario of a SAS but we have a look on
strategies for non-strategy-proof games as well, cf. Section 5.

In this section we give an overview on different settings for argumentation
games. To this end we identify three key parameters as follows.

1. Game protocol : How do agents take turn and when does the game termi-
nates?

2. Awareness: Does an agent have knowledge on the views of other agents?
3. Agent types: How are the preferences of an agent organized?

As discussed above, we assume for all scenarios that every action undertaken by
any agent is recorded by all other agents and the agents agree on the structure
of the attack relation.

4.1 Game Protocol

A protocol describes the extensional rules of an argumentation game and pre-
scribes how agents take turns and which actions can be undertaken. More for-
mally, we describe argumentation game protocols by means of state transition
rules as in operational semantics [18] that transform one state of a SAS Π into a
new one. Given a SAS Π and some initial state ΓΠ0 of Π the rules of a protocol
P are applied to ΓΠ0 and its successor state until a final state finalP (ΓΠ0 ) with
O(finalP (ΓΠ0 )) 6= nil is reached. In this paper, we do not allow for probabilistic
decision in the agents’ strategies, so finalP (ΓΠ0 ) is uniquely determined. An in-
vestigation on indeterministic strategies is part of future work. For an agent A
its gain for ΓΠ0 and P is defined as gainPA(ΓΠ0 ) = utilA(O(finalP (ΓΠ0 ))), i. e. the
agent’s utility for the outcome of the argumentation. In the following, let Π be
a SAS with Π = (F, {A1, . . . , An}) and Γ a state.

Direct Argumentation Mechanism

A direct argumentation mechanism [20] allows only one single step in the argu-
mentation game. Every agent may put forward any set of basic arguments at
once. After this, the mechanism terminates. This can be realized with the single
state transition rule T d1 defined as follows.

[T d1 ]
A = selA1(Γ ) ∪ . . . ∪ selAn(Γ )

Γ −→ (V 0′ , {V 1′ , . . . , V n′},OutputSem(V 0′))

4 Thanks to Iyad Rahwan for pointing that out to us.



with: V i
′

= V i(Γ )⊗ A (0 ≤ i ≤ n)

Obviously, the direct argumentation protocol P d = {T d1 } always terminates after
one execution step.

Synchronous Argumentation Mechanism

A generalization of the direct argumentation mechanism is the synchronous argu-
mentation mechanism. There, every agent may bring up a set of basic arguments
at the same time but the process is repeated until no agent wants to bring up
any more basic arguments. There are two variants of this mechanism, one where
agents are allowed to bring up new basic arguments even if they have not done
so in a previous step, and one where agents cannot bring up any new basic ar-
guments if they previously decided not to do so. We call the second variant a
rigid protocol. When using a rigid protocol, agents have to carefully deliberate
whether they choose to not bring forward any arguments, because they do not
get any other chance to do so. In the following, we only consider the non-rigid
variant. The non-rigid variant is realized with the following transition rules.

[T s1 ]
A = selA1(Γ ) ∪ . . . ∪ selAn(Γ ) and A 6= ∅

Γ −→ (V 0′ , {V 1′ , . . . , V n′}, nil)

with: V i
′

= V i(Γ )⊗ A (0 ≤ i ≤ n)

[T s2 ]
selA1(Γ ) ∪ . . . ∪ selAn(Γ ) = ∅

Γ −→ ( · , · ,OutputSem(V 0(Γ )))

The synchronous argumentation protocol P s = {T s1 , T s2 } also clearly terminates
after a finite number of steps, because the number of basic arguments is finite.
Note, that in the synchronous and the direct argumentation mechanism the
assumption of perfect information is restrained due to the simultaneous moves
of the agents. Therefore, the selection of arguments to put forward can only
depend on the moves of other agents from the previous steps but not on those
in the current step.

Dialectical Argumentation Mechanism

In natural dialogues agents usually alternately take turns when bringing up argu-
ments. In general, this can be realized by a dialectical argumentation mechanism
where we assume some order of the agents and basic arguments can be brought
up with respect to this order. As for the synchronous argumentation mechanism
two variants are possible with respect to rigidness of the protocol. Anyway, the
protocol needs some extra meta information for the states to select the next
agent appropriately and we have to ensure that the protocol terminates if no



agent wants to bring up new arguments. To this end we introduce some meta
information M = (k1, k2) ∈ N2 such that k1 is the index of the agent that last
took turn and k2 counts the number of agents that skipped bringing up new basic
arguments since the last one that did. For an initial state ΓΠ0 we set M = (0, 0).
Then this protocol is realized by the following transition rules.

[T t1 ]
k2 < n and A = sel

Ak′
1 (Γ )

Γ −→ (V 0′ , {V 1′ , . . . , V n
′}, nil)

M = (k1, k2) −→M ′ = (k′1, k
′
2)

with: V i
′

= V i(Γ )⊗ A (0 ≤ i ≤ n)

k′1 = (k1 mod n) + 1

k′2 =

{
0 if A 6= ∅
k2 + 1 otherwise

[T t2 ]
k2 = n

Γ −→ ( · , · ,OutputSem(V 0))
M = (k1, k2) −→M

As for the synchronous argumentation protocol the termination of the dialectical
argumentation protocol P t = {T t1 , T t2} is ensured due to the finiteness of the
universal set of basic arguments U .

Notice that a variant of the rigid version of the dialectical argumentation
mechanism has been previously employed for an argumentation game in [22].

The general protocols described above allow an agent to bring forward an ar-
bitrary number of arguments at any step. For the synchronous and dialectical
mechanisms a restricted variant would be allow an agent to bring forward only
a single argument at any step. We call such a protocol an atomic-step protocol.
More formally, an atomic-step protocol P can only be applied to a SAS (F, Ag)
if for all A ∈ Ag it is |selA(S,F)| ≤ 1 for any S ∈ P(U) and every F. Together
with the option of rigidness we obtain each four variants of the synchronous and
dialectical mechanisms. Notice also, that we do not restrict the agents to follow
some dialectical structure such as always replying to the last argument brought
forward. The above protocols can be refined in order to implement such restric-
tions but this is outside the scope of this paper. Assuming a fair implementation
of the protocols they fulfill most of the desiderata expected for argumentation
protocols proposed in [15] such as separation of syntax and semantics and dis-
couragement of disruption.

4.2 Awareness

Our definition of selection functions (Definition 9) is quite general as it takes the
whole state of the system into account when determining the basic argument



that should be brought forward. In particular, a selection function might be
heavily influenced by the views of other agents. Usually, an agent does not have
complete and accurate knowledge on the subjective views of other agents. One
extreme is that an agent has no awareness of other agents views. More formally,
a selection function selAk of an agent Ak ∈ Ag is ignorant if for all Γ1, Γ2 ∈ ∆ it
holds: If V0(Γ1) = V0(Γ2) and V k(Γ1) = V k(Γ2), then it is selAk(Γ1) = selAk(Γ2).
This means that the decision of agent Ak is at any time only dependent on the
agent’s own view and the common view.

Usually, an agent has some subjective beliefs about the views of other agents.
Let BelAk

(Aj , Γ ) the subjective belief of agent Ak on the view of agent Aj
in state Γ , i. e. BelAk

(Aj , Γ ) is itself a view. Then, a selection function selAk

of Ak is belief-based if for all Γ1, Γ2 ∈ ∆ it holds: If V 0(Γ1) = V 0(Γ2) and
V k(Γ1) = V k(Γ2) and for all j 6= k it is BelAk

(Aj , Γ1) = BelAk
(Aj , Γ2), then it is

selAk(Γ1) = selAk(Γ2). An agent Ak has full awareness if his selection function
selAk is belief-based and BelAk

(Aj , Γ ) = V j(Γ ) for every state Γ ∈ ∆ and j 6= k.
In between no awareness and full awareness there is a wide range of incom-

plete and uncertain awareness of other agents’ views, but we will not discuss this
topic in the current paper.

4.3 Agent Types

Under the term agent type we understand in this paper the way the preferences
of the agent are organized. The main reason for arguing with other agents is to
persuade other agents or to prove some statement. This goal is represented by the
agent’s utility function which ranks the possible outcomes of the argumentation.
In the following we identify some simple utility functions.

The most simple attitude of an agent towards the outcome of an argumen-
tation is the desire to prove a single proposition, no matter what else is proven.

Definition 12 (Indicator Utility Function). Let α ∈ Prop. The utility func-
tion utilα is called an indicator utility function for α if for any L ⊆ Prop it is
utilα(L) = 1 if α ∈ L and utilα(L) = 0 otherwise.

The choice of 0 and 1 as the only values for the indicator utility function is
arbitrary. Any utility function util with util(L) = k and util(L′) = l for any
L,L′ ⊆ Prop with α ∈ L and α /∈ L′ for some α can be normalized to an
indicator utility function if k > l. Note that the definition of indicator utility
functions resembles the rationale behind focal arguments in [20]. Because of this,
if utilα is the utility function of an agent A we call α the focal element of A.

The definition of an indicator function can be extended to comprehend for
multiple focal elements as follows.

Definition 13 (Multiple Indicator Utility Function). The utility function
utilS is called a multiple indicator utility function for S ⊆ Prop if for any L ⊆
Prop it is utilS(L) = 0 if S * L and utilS(L) = 1 if S ⊆ L.

Notice that it holds util{α} = utilα. This general definition does not demand that
S has to be “consistent”, i. e. there may be argument structures AS1 resp. AS2



for some α ∈ Prop resp. α′ ∈ Prop such that AS1 → AS2. Another variant of an
agent’s preferences can be characterized by a counting utility function which is
similar in spirit to the notion of acceptability maximising preferences in [20].

Definition 14 (Counting Utility Function). Let S ⊆ Prop. The utility func-

tion util#S is called a counting utility function for S if for any L ⊆ Prop it is

util#S (L) = |L ∩ S|.

Notice that it holds util#{α} = utilα. The difference between a counting utility

function and a multiple indicator utility function is that for a multiple indicator
utility function all focal elements have to be in the output of an argumentation
in order to yield a better utility than zero. An agent with a counting utility
function tries to prove as many of his focal elements as possible.

In general, there has to be no direct relationship between an agent’s view
and his utility function. For example, an agent with an indicator utility function
utilα may have no basic argument for α in his own view or, more drastically, his
view can give reasons to not believe in α. A special form of views are subjective
views in which an agent’s utility function is consistent with its own view.

Definition 15 (Subjective View). Let V be a view on F. V is a subjective
view on F with respect to a utility function util if and only if util(OutputSem(V ))
is a maximum of util.

Furthermore, a view V = (U ′,→′) is globally consistent with respect to a SAF F if
there are no two argument structures AS1, AS2 in F such that AS1 ↪→ AS2 and
AS1 ∩ U ′ 6= ∅ and AS2 ∩ U ′ 6= ∅. This means that no two basic arguments in V
can be used to construct argument structures that are, in any way, inconsistent
to one another.

Figure 4 summarizes the different game parameters we investigate in this pa-
per, ordered by their “complexity”. Distance from the origin indicates a more
demanding setting with respect to the complexity of the strategy for argument
selection.

5 Strategies for Selecting Arguments

In the following, we investigate some strategies for argument selection in differ-
ent argumentation games as defined in the previous section. The most simple
selection function one can think of is the one that just reports all basic argu-
ments of the agent’s view. Let Ak ∈ Ag be an agent identifier and Γ a state.
Then the truthful selection function selAk

> is defined as selAk

> (Γ ) = Uk \U0 with
V k(Γ ) = (Uk,→k) and V 0(Γ ) = (U0,→0). In other words, the selection function
selAk

> always returns all basic arguments of an agent’s view that aren’t already
present in the common view of the SAS. As being truthful does not demand for
strategic decisions the function is the same for direct, synchronous, and dialecti-
cal argumentation protocols. For an atomic-step protocol the truthful selection
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Fig. 4. Complexity of game parameters

function can be serialized, i. e., a serialized variant would select an arbitrary
basic argument each turn until all arguments have been brought forward.

In general, we are interested in finding selection functions that maximize an
agent’s gain in an argumentation game. Here, an argumentation game AG is
defined as a tuple AG = (Π,P ) with a SAS Π and a protocol P . The strongest
concept of a selection function that maximizes utility is that of a dominant
strategy. Let Π be a SAS and let Π ′ be the same as Π except possibly different
selection functions of the agents. Then the selection function selAk of agent Ak is
a dominant selection function if for any such Π ′ it is gainPAk

(ΓΠ0 ) ≥ gainPAk
(ΓΠ

′

0 ).
This means, regardless of how the other agents select their arguments, the selec-
tion function selAk maximizes the gain of agent Ak.5 The truthful strategy is of
special interest in game theory as it is the dominant strategy for strategy-proof
games. Therefore, given a strategy-proof argumentation game it is the best choice
for each agent to truthfully report all their basic arguments. In [20] Rahwan et.
al. identified a special type of direct argumentation game as strategy-proof. We
can restate and extend their result in our framework as follows.

Theorem 2. Let Π = (F, Ag) be a SAS. If the initial view V i(ΓΠ0 ) of each agent
Ai ∈ Ag is subjective and globally consistent with respect to F and the utility
function utilAi of each agent Ai is a counting utility function, then (Π,P d) is
strategy-proof.

5 Notice that agent Ak may have the same selection function selAk in Π and Π ′.



Observe that the above statement is independent of the actual chosen semantics
due to the skeptical definition of Output. Theorem 2 states that the dominant
strategy for subjective and globally consistent views is to use the truthful se-
lection function sel>. It is a clear extension of Theorem 32 stated in [20] as
our underlying argumentation framework is a structured argumentation frame-
work. The statement of Theorem 2 easily extends to indicator utility functions,
multiple indicator utility functions as well as synchronous and dialectical argu-
mentation protocols (the latter because of the revelation principle, see above).
However, the condition of a globally consistent view is hard to check for an agent
who has no idea of the structure of the underlying framework F. Given a basic
argument A in his view he may not know if A can be used to construct an ar-
gument structure against one of his “own” arguments. Due to this observation
Theorem 2 is only applicable for an agent if the global consistency is assured by
a trustworthy third party or if the agents have full awareness of the other agent’s
views and thus can verify the global consistency by themselves. Otherwise an
agent cannot know if the best strategy is to be truthful.

In general, full awareness is not a realistic assumption in argumentation.
When agents cannot verify the global consistency of their view, some strategic
deliberations are mandatory as the following example shows.

Example 6. Consider the following SAF F2 = (U,→).

U = { (∅, a), ({a}, b), ({b}, c), (∅, e),
({e}, d), ({d}, f), ({d}, c) }

→ = { (({d}, f), ({d}, c)), (({d}, f), ({b}, c)) }

An overview of F2 is given in Figure 5 (a). Let Π = (F2, {A1, A2}) be a SAS and

({e}, d)

(∅, e) (∅, a)

({d}, f) ({b}, c)

({a}, b)({d}, c)

1

({a}, d)

(∅, a)

({d}, f) ({b}, c)

({a}, b)({d}, c)

1

(a) (b)

Fig. 5. The structured argumentation frameworks (a) F2 from Example 6 and (b) F3

from Example 8

the initial state ΓΠ0 = (∅, {V 1, V 2}, nil) of Π be given as follows.

V 1 = (U \ {({d}, f)}, ·) V 2 = ({({d}, f)}, ∅)



The attack relation of V 1 is omitted but can be determined via Definition 6.
Note that view V 1 is subjective but not globally consistent. Imagine A1 wants to
prove c, i. e., the utility function of Ak is utilc. Note that there are two argument
structures in F2 to prove c while one of them ([({d}, c), ({e}, d), (∅, e)]) enables A2

to bring up an attacker, namely [({d}, f), ({e}, d), (∅, e)]. From a self-interested
point of view A1 should only bring forward the arguments that do not allow A2

to counterargue.

In the following, we develop some simple strategies for argument selection that
generalize the truthful strategy in scenarios where the agent may not have a
globally consistent view and that are more cautious in bringing forward argu-
ments. In order to ensure that an agent brings forward only the arguments that
are not harmful for proving his focal elements, we define the attack set as follows.

Definition 16 (Attack Set). Let F = (U,→) be a SAF and α ∈ Prop. The
attack set AttackSetF(α) of α in F is defined as

AttackSetF(α) = { A ∈ U | ∃AS1, AS2 ∈ ArgStructU :

A ∈ AS1 ∧ cl(top(AS2)) = α ∧AS1 ↪→ AS2 }
Intuitively, the set AttackSetF(α) contains all arguments that can be harmful to α
in any way. For example, for any argument A with claim α, the set AttackSetF(α)
contains all attackers on A. More generally, AttackSetF(α) contains every argu-
ment that belongs to an argument structure that indirectly attacks an argument
structure for α. Using attack sets we can define a simple strategy that brings
only forward arguments that cannot be harmful in any way.

Definition 17 (Overcautious Selection Function). Let α ∈ Prop and Ak
an agent identifier. Let socα,Ak

be the selection function defined as

socα,Ak
(Γ ) = selAk

> (Γ ) \ AttackSetV k(Γ )(α)

for every state Γ . The function socα is called the overcautious selection function
for α.

Although the overcautious strategy is more careful in bringing forward argu-
ments one should note that the determination of AttackSetV k(Γ )(α) depends on
the current view of the agent and might not be complete. The overcautious
selection function can be extended to a belief-based selection function by incor-
porating the beliefs of Ak on the views of the other agents, into the determination
of AttackSetV k(Γ )(α). However, we will not formalize this in the current paper.

Example 7. We continue Example 6 but suppose selA1 = socc,Ak
. Here, A1 will not

bring forward arguments (∅, e) and ({e}, d) as they all belong to AttackSetV1(c).
Note that this strategy is independent of the strategy of any other agent.

Although the overcautious strategy is a very simple strategy for argument se-
lection it is the dominant strategy in a simple class of argumentation games. If
an agent has a complete view, i. e., he knows of every argument in the system,
but has no awareness on the other agents beliefs, then its best choice is to avoid
bringing forward possibly harmful arguments.



Theorem 3. Let Π = (F, Ag) be a SAS. For an agent Ai ∈ Ag, if Vi(Γ
Π
0 ) = F

and Ai has no awareness then the overcautious selection function is a dominant
strategy for Ai in (Π,P d).

The limitations of this simple strategy are reached very quickly as the following
small modification of Example 6 shows.

Example 8. Consider the following SAF F3 = (U,→), cf. Figure 5 (b).

U = { (∅, a), ({a}, b), ({b}, c), ({a}, d), ({d}, f), ({d}, c) }
→ = { (({d}, f), ({d}, c)), (({d}, c), ({d}, f)) }

Let Π = (F3, {A1, A2}) be a SAS and ΓΠ0 = (∅, {V1, V2}, nil) the initial state
of Π with V 1 = F3 and V 2 = (U \ {({a}, d)}, ·). Suppose utilA1 = utilc and
selA1 = socc,Ak

. Here, A1 will never bring forward argument (∅, a) as (∅, a) ∈
AttackSetV1

(c). As a consequence, A1 will never be able to proof any argument
for c.

As Example 8 showed it is advisable to bring forward arguments that on the
one side may be harmful to one own’s desires but on the other side necessary to
actually reach the desires. So we refine the overcautious strategy by allowing the
agent to bring forward arguments that are inherently necessary for constructing
an argument structure for his focal element.

Definition 18 (Necessary Arguments). Let F = (U,→) be a SAF and α ∈
Prop. The set of necessary arguments NecArgF(α) for α in F is defined as

NecArgF(α) =
⋂

A∈U,cl(A)=α,AS∈ArgStructU (A)

AS

Definition 19 (Cautious Selection Function). Let α ∈ Prop, Ak and agent
with a view V and scα,Ak

be the selection function defined as

scα,Ak
(Γ ) = selAk

> (Γ ) \ (AttackSetV (α) \ NecArgV (α))

scα,Ak
is called the cautious selection function for α.

Example 9. We continue Example 8 but suppose utilA1 = utilc and selA1 = scc,Ak
.

Here, A1 will bring forward argument (∅, a) because it is inherently necessary to
construct any argument structure for c.

The cautious strategy performs well in the above example and can be seen as
a lower bound for direct argumentation protocols, i. e. the cautious strategy
returns as few arguments as necessary.

6 Summary and Future Work

In this work we have introduced structured argumentation frameworks, a for-
malism that extends Dung’s abstract argumentation frameworks [11] and are a



slightly modified variant of dynamic argumentation frameworks [23]. We have
used structured argumentation frameworks for defining a multi-agent setting
that contains two elements: one describing the basic contents of the scenario,
i. e. the underlying argumentation framework and the set of agents; and a sec-
ond element that describes the dynamic part of an evolving argumentation and
determines how the state of the multi-agent system evolves in time. In our frame-
work every agent has its own view on the underlying argumentation framework
and its own preferences over the output of the argumentation process. We pro-
posed a first attempt to characterize argumentation games by means of the used
game protocol, the awareness of the agents on other agents beliefs, and the struc-
ture of the preferences of the agents. We used structured argumentation systems
to model argumentation among a group of agents. We have also presented some
properties for the proposed framework and protocols.

For future work we plan to investigate the concept of strategies based on (un-
certain) beliefs of other agents’ views. In natural dialogues strategic argumenta-
tion is all about what an agents expects of his opponents beliefs and attitudes as
even weak arguments can win an argumentation if the opponent has no counter-
argument available. Especially when considering dialectical argumentation the
possibility to learn from an agent’s previous moves and thus building up beliefs
on the other agent’s view incrementally might bring advantage in the ongoing
argumentation.
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Argumentation Framework for Handling Dynamics. In Proceedings of NMR 2008,
pages 131–139, 2008.
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