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Abstract. We consider the problem of quantitatively assessing the con-
flict between knowledge bases in knowledge merging scenarios. Using the
notion of Craig interpolation we define a series of disagreement mea-
sures and analyse their compliance with properties proposed in previous
work by Potyka. We study basic complexity theoretic questions in that
scenario and discuss the suitability of our approaches.
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1 Introduction

Inconsistencies arise easily whenever knowledge has to be aggregated from differ-
ent sources [2,3,14]. Approaches to belief merging and information fusion address
these issues by providing computational approaches for automatically resolving
these issues in some sensible way. These fields bear a close relationship with
the fields of judgement and preference aggregation [20,8] and also feature their
own version of Arrow’s impossibility result [1], insofar that there cannot be any
“rational” belief merging approach [7]. This calls for semi-automatic methods
that take human background knowledge into account when knowledge has to
be merged in order not to remove important pieces of information. In order to
support the task of semi-automatic merging, we investigate approaches to anal-
yse belief merging settings, i. e., approaches that can explain reasons for incon-
sistency and assess their severity. More specifically, we investigate disagreement
measures [17], i. e., functions that take a knowledge base profile P = 〈K1, . . . ,Kn〉
as input and return a non-negative value that quantifies the severity of the dis-
agreement between the different sources of information modelled by K1, . . . ,Kn.
Disagreement measures are closely related to inconsistency measures [9,19,18],
which themselves are functions that assess the severity of inconsistency in a sin-
gle knowledge base. Disagreement and inconsistency measures can be used to
help in debugging inconsistencies in semi-automated settings [10,4,5].

In this paper, we develop novel disagreement measures based on the concept
of Craig interpolation [6]. Given two knowledge bases K1, K2 with K1∪K2 being
inconsistent, an interpolant is a formula that concisely characterises an aspect of
this inconsistency (we will provide formal definitions later). Thus, interpolants
play a similar role in analysing the disagreement between two knowledge bases
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as minimal inconsistent subsets do in analysing the inconsistency within a sin-
gle knowledge base. As a matter of fact, minimal inconsistent subsets play a
dominant role in many approaches to measuring inconsistency [12,15,21] and,
therefore, it seems plausible to explore the use of interpolants in measuring dis-
agreement. In order to do that, we consider the set of all interpolants (up to
semantical equivalence) and define measures based on the size of that set and on
the information content of the weakest/strongest interpolants (which are well-
defined concepts due to the fact that the set of interpolants form a complete
lattice). We show that our approaches provide meaningful results and comply
with many of the rationality postulates introduced in [17]. We also undertake
a small study of the computational complexity of several tasks relevant for our
work, showing that (unsurprisingly) all of those are intractable. In summary, the
contributions of this paper are as follows:

1. We make some general observations on interpolants in order to establish a
framework suitable for measuring disagreement (Section 3).

2. We present novel disagreement measures based on interpolants (Section 4).
3. We investigate the compliance of these disagreement measures with ratio-

nality postulates from the literature (Section 5).
4. We investigate the computational complexity of several tasks pertaining to

our disagreement measures (Section 6).

We introduce necessary preliminaries in Section 2 and conclude in Section 7.
We omit several proofs due to space restrictions. These can be found in an

online appendix1.

2 Preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set of
propositions, and let L(At) be the corresponding propositional language con-
structed using the usual connectives ∧ (conjunction), ∨ (disjunction),→ (impli-
cation), and ¬ (negation). A literal is a proposition p or a negated proposition
¬p.

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let K
be the set of all knowledge bases.

A clause is a disjunction of literals. A formula is in conjunctive normal form
(CNF) if the formula is a conjunction of clauses. If Φ is a formula or a set of
formulas we write At(Φ) to denote the set of propositions appearing in Φ. For a
set Φ = {φ1, . . . , φn} let

∧
Φ = φ1 ∧ . . . ∧ φn and ¬Φ = {¬φ | φ ∈ Φ}.

Semantics for a propositional language is given by interpretations where an
interpretation ω on At is a function ω : At→ {true, false}. Let Ω(At) denote the
set of all interpretations for At. An interpretation ω satisfies (or is a model of)
an atom a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The satisfaction

1 http://mthimm.de/misc/rst_dismes_proofs.pdf
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relation |= is extended to formulas in the usual way. For Φ ⊆ L(At) we also
define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.

In the following, let Φ,Φ1, Φ2 be formulas or sets of formulas. Define the set
of models Mod(Φ) = {ω ∈ Ω(At) | ω |= Φ}. We write Φ1 |= Φ2 if Mod(Φ1) ⊆
Mod(Φ2). Φ1, Φ2 are equivalent, denoted by Φ1 ≡ Φ2, if and only if Mod(Φ1) =
Mod(Φ2). Define the closure Cn(Φ) of a formula or set of formulas Φ via Cn(Φ) =
{φ | Φ |= φ}. If Mod(Φ) = ∅ we also write Φ |=⊥ and say that Φ is inconsistent
(or unsatisfiable).

3 Craig Interpolants

An important result in first-order logic is Craig’s Interpolation Theorem [6].

Theorem 1 ([6]). Let φ, ψ be closed formulæ such that φ |= ψ. Then there
exists a closed formula I containing only predicate symbols, function symbols
and constants occurring in both φ and ψ such that φ |= I and I |= ψ.

Every formula I satisfying the property in Theorem 1 will be called an inter-
polant of φ and ψ. In the context of propositional logic, and of finite sets of
propositional formulas, the concept of interpolant specializes as follows:

Definition 2. Let Φ and Φ′ be finite sets of propositional logic formulas. A
formula φ is called an interpolant of Φ wrt. Φ′ if

1. Φ |= φ,
2. Φ′ ∪ {φ} |=⊥, and
3. At(φ) ⊆ At(Φ) ∩ At(Φ′)

Consider, for instance, two sets Φ1 = {r ∨¬p,¬r ∨¬q} and Φ2 = {p, q}. The
formula p → ¬q is an interpolant of Φ1 wrt Φ2, as Φ1 |= p → ¬q, Φ2 ∪ {p →
¬q} |=⊥ and At({p→ ¬q}) = {p, q} ⊆ At(Φ1) ∩ At(Φ2).

Clearly, two finite sets Φ and Φ′ of formulas in propositional logic have an
interpolant if and only if Φ ∪ Φ′ is unsatisfiable. Let I(Φ,Φ′) denote the set of
interpolants of Φ and Φ′.

Let ϕ be a formula and x a propositional symbol, we write ϕ[x 7→ >] to
denote that all occurrences of x in ϕ are replaced by >. Analogously, ϕ[x 7→⊥]
means that all ocurrences of x are replaced by ⊥. For instance, for the formula
ϕ = p ∨ ¬q, we get ϕ[p 7→ >] ≡ > ∨ ¬q.

Definition 3. Let φ be a propositional formula and x ∈ At(φ). We use the
following notation:

– ∃xφ := φ[x 7→ ⊥] ∨ φ[x 7→ >];
– ∀xφ := φ[x 7→ ⊥] ∧ φ[x 7→ >].

Let Φ be a finite set of propositional formulæ, and let φ be the conjunction of all
the formulæ in Φ. For every x ∈ At(φ), we use the following notation ∃xΦ :=
∃xφ, ∀xΦ := ∀xφ.
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Propositional logic allows uniform interpolation: For every formula φ and ev-
ery set {y1, . . . , ym} ⊆ At(φ) there exists a propositional formula IΦ such that
At(IΦ) ⊆ {y1, . . . , ym} with the property that for every formula φ′ such that
φ ∧ φ′ |=⊥ and {y1, . . . , ym} = At(φ) ∩ At(φ′), IΦ is an interpolant of φ and φ′.
This follows from the following result (here formulated for finite sets of proposi-
tional formulæ).

Proposition 1. Let Φ be a finite set of propositional formulas. Assume that
At(Φ) = {x1, . . . , xn, y1, . . . , ym}. Then the following hold:

1. Φ |= ∃x1 . . . ∃xnΦ.
2. Let ψ be a propositional formula with At(ψ) ⊆ {y1, . . . , ym} such that Φ |= ψ.

Then ∃x1 . . . ∃xnΦ |= ψ.
3. ∀x1 . . . ∀xnΦ |= Φ (i.e. ∀x1 . . . ∀xnΦ |= φi for every formula φi ∈ Φ).
4. Let ψ be a formula with At(ψ) ⊆ {y1, . . . , ym} such that ψ |= Φ.

Then ψ |= ∀x1 . . . ∀xnΦ.

In the following, we define some auxiliary notions for interpolants and make
some first observations regarding the structure of I(Φ,Φ′).

Proposition 2. Let Φ and Φ′ be finite sets of formulas.

1. If Φ ∪ Φ′ 6|=⊥ then I(Φ,Φ′) = ∅.
2. If Φ |=⊥ and Φ′ |=⊥ then I(Φ,Φ′) = L(At(Φ) ∩ At(Φ′)).
3. If Φ |=⊥ and Φ′ 6|=⊥ then I(Φ,Φ′) = L(At(Φ) ∩ At(Φ′)) ∩

(
¬Cn(Φ′) ∪ {φ |

φ |=⊥}
)
.

4. If Φ 6|=⊥ and Φ′ |=⊥ then I(Φ,Φ′) = L(At(Φ) ∩ At(Φ′)) ∩ Cn(Φ).

Proof. (1) Assume that I(Φ,Φ′) 6= ∅. Then there exists a formula φ such that
Φ |= φ and Φ′ ∪ {φ} |=⊥. Hence, Φ ∪ Φ′ |=⊥.

(2) If Φ |=⊥ and Φ′ |=⊥ then (i) Φ |= φ for all φ ∈ L(At(Φ) ∩ At(Φ′)) and
(ii) Φ′ ∪ {φ} |=⊥ for all φ ∈ L(At(Φ) ∩ At(Φ′)).

(3) If Φ |=⊥ then Φ |= φ for all φ ∈ L(At(Φ) ∩ At(Φ′)). If Φ′ 6|=⊥ then
Φ′ ∪ {φ} |=⊥ for all φ such that (i) φ = ¬φ′, where φ′ ∈ Cn(Φ′) or (ii) φ |=⊥.

(4) If Φ 6|=⊥ and Φ′ |=⊥ then a formula φ is an interpolant iff Φ |= φ and
φ ∈ L(At(Φ) ∩ At(Φ′)).

As the notion of an interpolant is a syntactical one, the set I(Φ,Φ′) also contains
infinite syntactical variants for each interpolant (except for the case where Φ∪Φ′
is consistent); in particular, if φ ∈ I(Φ,Φ′) then for every formula φ′ ∈ L(At(Φ)∩
At(Φ′)), if φ ≡ φ′ then φ′ ∈ I(Φ,Φ′). However, we will consider the following
finite representation of I(Φ,Φ′). For that, let [·] : L(At) → Ω(At) be a function
that maps each formula to its equivalence class w.r.t. ≡.

Definition 4. Let Φ and Φ′ be finite set of formulas. We denote by SI(Φ,Φ′)
the set of equivalence classes of interpolants wrt. semantical equivalence, i. e.,

SI(Φ,Φ′) = {[φ] | φ ∈ I(Φ,Φ′)}
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In the following, by abuse of notation we refer to [φ] also as an interpolant if φ
is an interpolant.

Remark 1. If the sets Φ,Φ′ of propositional formulæ are finite then the set
At(Φ) ∩ At(Φ′) is finite, so the set of all equivalence classes of formulæ over

this set of atoms is finite and has at most 22
|At(Φ)∩At(Φ′)|

elements, thus SI(Φ,Φ′)
is finite.

It can be easily seen that the elements of SI(Φ,Φ′) form a lattice wrt. |= and
the operations ∧ and ∨. Formally, we can make the following observations.

Proposition 3. Let Φ and Φ′ be finite set of formulas.

1. If [φ], [φ′] ∈ SI(Φ,Φ′) then [φ ∧ φ′] ∈ SI(Φ,Φ′).
2. If [φ], [φ′] ∈ SI(Φ,Φ′) then [φ ∨ φ′] ∈ SI(Φ,Φ′).
3. There is a uniquely defined [φw] ∈ SI(Φ,Φ′) with φ′ |= φw for all [φ′] ∈

SI(Φ,Φ′).
4. There is a uniquely defined [φs] ∈ SI(Φ,Φ′) with φs |= φ′ for all [φ′] ∈

SI(Φ,Φ′).

Conditions 1 and 2 of the proposition above are trivial. We illustrate the
intuition of both conditions 3 and 4 with an example. Consider the knowledge
bases K1 = {a, b} and K2 = {a,¬b}. We have that

SI(K1,K2) = {[a ∧ b], [b], [a→ b], [a↔ b]}.

Note that every formula in SI(K1,K2) implies a → b (the φω of condition 3).
Similarly, the formula a∧ b implies all formulae in SI(K1,K2), which makes a∧ b
the formula [φs] of condition 4.

Remark 2. If the sets Φ,Φ′ of propositional formulæ are finite then as SI(Φ,Φ′)
is finite, (SI(Φ,Φ′),∧,∨) is a complete lattice.

We call [φw] the weakest interpolant and [φs] the strongest interpolant. It
can be easily seen that

[φw] =

 ∨
[φ]∈SI(Φ,Φ′)

φ

 [φs] =

 ∧
[φ]∈SI(Φ,Φ′)

φ


We abbreviate the weakest interpolant of SI(Φ,Φ′) by Weakest(Φ,Φ′) and the
strongest interpolant of SI(Φ,Φ′) by Strongest(Φ,Φ′). If SI(Φ,Φ′) = ∅ both no-
tions are undefined. We conclude this section with some further observations
that will be useful in the remainder of the paper.

Proposition 4. Let Φ, Φ′, and Φ′′ be finite set of formulas.

1. I(Φ,Φ′) ⊆ I(Φ,Φ′ ∪ Φ′′)
2. I(Φ,Φ′) ⊆ I(Φ ∪ Φ′′, Φ′)
3. SI(Φ,Φ′) ⊆ SI(Φ,Φ′ ∪ Φ′′)
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4. SI(Φ,Φ′) ⊆ SI(Φ ∪ Φ′′, Φ′)
5. Weakest(Φ,Φ′) |= Weakest(Φ,Φ′ ∪ Φ′′)
6. Weakest(Φ,Φ′) |= Weakest(Φ ∪ Φ′′, Φ′)
7. Strongest(Φ,Φ′ ∪ Φ′′) |= Strongest(Φ,Φ′)
8. Strongest(Φ ∪ Φ′′, Φ′) |= Strongest(Φ,Φ′)

Proof. Considering item 1, for φ ∈ I(Φ,Φ′), from Φ′∪{φ} |=⊥ it directly follows
Φ′∪Φ′′∪{φ} |=⊥. The other two conditions of Definition 2 remain valid as well.
Item 2 is proven analogously and the remaining items follow directly from 2. ut

4 Disagreement Measures based on Interpolation

We consider the scenario of measuring disagreement between multiple knowledge
bases [17] using interpolation. For that, we denote a knowledge base profile by
P = 〈K1, . . . ,Kn〉 with K1, . . . ,Kn being knowledge bases. Furthermore, for P of
this form and another knowledge base K, we denote by P ◦K the concatenation
of P with K, i. e., P ◦ K = 〈K1, . . . ,Kn,K〉. Furthermore, for k ∈ N define
P ◦k K = (P ◦k−1 K) ◦ K and P ◦1 K = P ◦ K. Let K denote the set of all
knowledge base profiles. Then Potyka [17] defines a disagreement measure as
follows. Let R∞≥0 be the set of non-negative real values including ∞.

Definition 5. A disagreement measure D is a function D : K → R∞≥0 that
satisfies

Consistency D(P ) = 0 iff
⋃
P is consistent.

Symmetry D(〈K1, . . . ,Kn〉) = D(〈Kσ(1), . . . ,Kσ(n)〉) for each permutation σ of
{1, . . . , n}.

We also write D(K1, . . . ,Kn) for D(〈K1, . . . ,Kn〉) to ease notation.
In the following, we define a series of disagreement measures that work on

knowledge base profiles with exactly two elements. In order to generalise these
measures to arbitrary knowledge base profiles, we consider the following con-
structions.

Definition 6. Let D be a function D : K × K → R∞≥0. Then the induced sum-

measure DΣ : K→ R∞≥0 and max-measure Dmax : K→ R∞≥0 are defined via

DΣ(P ) =
∑
K,K′∈P

D(K,K′)

Dmax(P ) = max{D(K,K′) | K,K′ ∈ P}

In order to obtain valid disagreement measures using these two constructions, we
only need to require the Consistency property from the used two-place functions:

Consistency2 D(K1,K2) = 0 iff K1 ∪ K2 is consistent.

Proposition 5. Let D be a function D : K×K→ R∞≥0 that satisfies Consistency2

then both DΣ and Dmax are disagreement measures.
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Proof. We first consider DΣ. If
⋃
P is consistent then K ∪ K′ is consistent as

well for all K,K′ ∈ P , implying D(K,K′) = 0. It follows DΣ(P ) = Dmax(P ) = 0
showing Consistency. The property Symmetry is satisfied by construction.

Let us now define some concrete measure using interpolants.

Definition 7. Let K1,K2 be finite and consistent set of formulas. Define the
measure DSI : K×K→ R∞≥0 via

DSI(K1,K2) = |SI(K1,K2)|

Observe that DSI satisfies Consistency2, as SI(K,K′) = ∅ if K∪K′ is consistent.
So DΣSI and Dmax

SI are disagreement measures according to Proposition 5.

Example 1. Consider the three following knowledge bases: K1 = {a, b},K2 =
{b, c} and K3 = {a,¬b}. Going for their interpolants we get:

– SI(K1,K2) = SI(K2,K1) = ∅, as K1 is consistent with K2;
– SI(K1,K3) = {[b], [a∧b], [a→ b]} and SI(K3,K1) = {[¬b], [a→ ¬b], [a∧¬b]};
– SI(K2,K3) = {[b]} and SI(K3,K2) = {[¬b]}, as At({K2,K3}) = {b}.

Therefore, DΣSI(K1,K2,K3) = 8 and Dmax
SI (K1,K2,K3) = 3.

We consider another measure based on the information content of strongest
(resp. weakest) interpolant. We use the following definition of an information
measure, similar in spirit to the definition given in [11].

Definition 8. An information measure J is a function J : L(At) → R∞≥0 that
satisfies the following four properties:

1. J(>) = 0.
2. J(⊥) =∞.
3. If φ |= φ′ then J(φ) ≥ J(φ′).
4. If φ 6|= ⊥ then J(φ) <∞.

Here is a simple example of an information measures:

JM (φ) =

0 if > |= φ
∞ if φ |=⊥
1/|Mod(φ)| otherwise

(1)

It is easy to verify that JM is indeed an information measure according to Defi-
nition 8.

Then consider the following measure.

Definition 9. Let K1,K2 be finite and consistent set of formulas and J some
information measure. Define the following measure DJ : K×K→ R∞≥0:

DJ(K1,K2) =


0 if K1 ∪ K2 is consistent
∞ if J(Weakest(K1,K2)) = 0
J(Strongest(K1,K2))
J(Weakest(K1,K2))

otherwise
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Again, observe that DJ satisfies Consistency2 (independently of J). So DΣJ and
Dmax
J are disagreement measures according to Proposition 5.

Example 2. Consider the three knowledge bases from Example 1:K1 = {a, b},K2 =
{b, c} and K3 = {a,¬b}. In the table below, we show their strongest and weak-
est interpolants as well as their disagreement measure DJM , where JM is the
information measure defined in (1) above.

(K1,K3) (K3,K1) (K2,K3), (K3,K2) (K1,K2) (K1,K2)

Weakest [¬a ∨ b] [¬a ∨ ¬b] [b] [¬b] - -

Strongest [a ∧ b] [a ∧ ¬b] [b] [¬b] - -

DJM 3 3 1 1 0 0

As K1 is consistent with K2 they do not have any interpolant, and therefore their
disagreement measure DJM is zero. Note that each of the weakest interpolants
between K1 and K3 have each 6 models, while their strongest interpolants have
each 2 models.

5 Analysis

Potyka [17] proposes some desirable properties for disagreement measures, in-
spired by similar properties from inconsistency measurement [18]. Let D be some
disagreement measure. For P = 〈K1, . . . ,Kn〉, we say that Ki, i ∈ {1, . . . , n}, is
involved in a conflict, if there is C ⊆ {1, . . . , n} such that

⋃
j∈C Kj is consistent

but Ki ∪
⋃
j∈C Kj is inconsistent.

Monotony (MO) D(K1, . . . ,Kn) ≤ D(K1 ∪ K′, . . . ,Kn).
Dominance (DO) For formulas φ, ψ with φ |= ψ and φ 6|=⊥,D(K1∪{φ}, . . . ,Kn) ≥
D(K1 ∪ {ψ}, . . . ,Kn).

Safe Formula Independence (SFI) For a formula φ with φ 6|=⊥ and At(φ) ∩
At(
⋃
Ki) = ∅, D(K1 ∪ {φ}, . . . ,Kn) = D(K1, . . . ,Kn).

Adjunction Invariance (AI) For formulas φ, ψ,D(K1∪{φ, ψ}, . . . ,Kn) = D(K1∪
{φ ∧ ψ}, . . . ,Kn).

Tautology (TA) If K is a knowledge base with > |= K then D(P ) ≥ D(P ◦K).
Contradiction (CO) If K is inconsistent then D(P ) ≤ D(P ◦ K).
Majority (MAJ) If K ∈ P is consistent and involved in a conflict, then there

is k ∈ N with D(P ◦k K) < D(P ).
Majority Agreement in the Limit (MAJL) If M is a maximal consistent

subset of
⋃
P then limk→∞D(P ◦kM) = 0.

We check compliance of the disagreement measures DΣSI,Dmax
SI ,DΣJ and Dmax

J

against the disagreement measures postulates mentioned above. For this, we
introduce the concept of agreement between interpretations. We say that an
interpretation w agrees with an interpretation w′ modulo a set of propositional
symbols X iff w(p) = w′(p), for all p ∈ X. Note that the agreement relation is
symmetric, that is, if w agrees with w′ modulo X then w′ agrees with w modulo
X. We recall the Coincidence Lemma on propositional logic:
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MO DO SFI AI TA CO MAJ MAJL

DΣ
SI 3 7 3 3 7 3 7 7

Dmax
SI 3 7 3 3 3 3 7 7

DΣ
J 3 7 3 3 3 3 7 7

Dmax
J 3 7 3 3 3 3 7 7

Table 1. Compliance of investigated disagreement measures with postulates.

Lemma 1 (Coincidence Lemma). If two interpretations w and w′ agree with
At(α), then w |= α iff w′ |= α.

Proposition 6. Let K be knowledge base, and ϕ a consistent formula. If At(K)∩
At(ϕ) = ∅, At(α) ⊆ At(K) and K ∪ {ϕ} |= α then K |= α.

Proof. The case that K is inconsistent is trivial. So we focus on the case that
K is consistent. Let then w ∈ Mod(K) be an interpretation of K, we will show
that w ∈ Mod(α). As ϕ is consistent, it has at least one interpretation. Let w′ ∈
Mod(ϕ), and let w0 be the following interpretation: w0(p) = w(p), if p ∈ At(K);
and w0(p) = w′(p), otherwise. Note that w0 agrees with w modulo At(K), which
implies that w0 |= K. As At(K) ∩ At(ϕ) = ∅, we get that w0 agrees with w′

modulo At(ϕ). This implies that w0 |= ϕ. Therefore, as w0 |= K and w0 |= ϕ,
we have that w0 |= K ∪ {ϕ}. Thus, as K ∪ {ϕ} |= α, we get that w0 |= α. As,
by hypothesis, At(α) ⊆ At(K), we get that w agrees with w0 modulo At(α). This
implies, from Lemma 1, that w |= α.

Theorem 2. The compliance of the measures DΣSI, Dmax
SI , DΣJ , and Dmax

J is as
shown in Table 1.

Note again that the proof of the above theorem can be found online2.
Potyka [17] has defined disagreement measures from inconsistency measures.

The idea is that the degree of disagreement in a knowledge profile would corre-
spond to measuring the degree of inconsistencies between the knowledge bases in
a knowledge profile. Potyka then discusses about some principles that disagree-
ment measures should satisfy, and show that many of the disagreement measures
induced from inconsistency measures fail to satisfy some of these principles. He
then proposes the disagreement measure Dη, based on the η-inconsistency mea-
sure [13], to capture some of these principles. Following this line, we analyse
here some desirable properties that disagreement measures on interpolants sat-
isfy. We show that Potyka’s Dη measure has some issues that are better handled
by disagreement measures based on interpolants.

We start by addressing the Adjunction Invariance axiom. Breach of this ax-
iom can lead to unintuitive behaviours. For instance, both {α∧¬α} and {α,¬α}
should have the same disagreement value, since they present the same conflicts.
Most of the disagreement measures induced from inconsistency measures anal-
ysed by Potyka, including his Dη measure, is not adjunctive invariant. On the

2 http://mthimm.de/misc/rst_dismes_proofs.pdf

http://mthimm.de/misc/rst_dismes_proofs.pdf
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other hand, as shown above, disagreement measures based on interpolants are
adjunctive invariant. This is because interpolants are not syntax sensitive, in-
stead they consider formulæ that share the same signature.

Potyka’s disagreement measure Dη plateaus when each knowledge base in a
knowledge profile conflicts with each other. As he himself criticizes, this scenario
makes the measurement purely dependable on the size of the knowledge profile.
Precisely, in that case Dη(P ) = (|P | − 1)/|P |. In this scenario, a disagreement
measure should still be able to distinguish an increase of conflicts, even if two
knowledge profiles have the same size. We illustrate it in the following example.

Example 3. Let P = 〈K1,K2,K3〉, and P ′ = 〈K1,K2,K4〉 be two knowledge pro-
files, where K1 = {a, b},K2 = {¬a, b},K3 = {¬b} and K4 = {¬b,¬a}. Note that
the four knowledge bases are consistent, but are inconsistent with each other.
For the Dη disagreement measure, we would have Dη(P ) = Dη(P ′) = 2/3.

Note that, against K1 and K2, the knowledge base K4 presents more conflicts
than K3. Thus, though both P and P ′ have the same size, P ′ is more conflicting
than P . A disagreement measure should be able to distinguish this difference of
conflicts. The Dη measure, however, does not distinguish these conflicts, since
when knowledge bases are pairwise inconsistent, the measure considers only the
size of the knowledge profile, which is rather simplistic.

On the other hand, disagreement measures on interpolants are able to distin-
guish this tenuous difference of conflicts. To illustrate this, consider the DΣSI mea-
sure. For the knowledge bases above we would getDSI(K1,K2) = 4,DSI(K1,K3) =
1,DSI(K1,K4) = 4,DSI(K2,K3) = 1 and DSI(K2,K4) = 4. Thus, DSI(P )Σ =
(4 + 1 + 1) ∗ 2 = 12 and DΣSI(P ′) = (4 + 4 + 4) ∗ 2 = 24.

This shows that disagreement measures on interpolants, such as DΣSI, present
ways of distinguishing sensible conflicts between knowledge bases. Towards this
end, a deeper investigation of which rational behaviours interpolants yield for
disagreement measures is a path worth to explore.

6 Computational complexity

To conclude our analysis, we now investigate the computational complexity of
problems related to our novel measures.

Let us first consider some general observations on interpolants, which seem—
to the best of our knowledge—not have been explicitly mentioned in the litera-
ture thus far.

Theorem 3. Let Φ and Φ′ be sets of formulas and let φ be a formula. Deciding
whether φ is an interpolant of Φ wrt. Φ′ is coNP-complete.

Proof. For coNP-membership, consider the complement problem of deciding
whether φ is not an interpolant of Φ wrt. Φ′ and define the following non-
deterministic algorithm. On instance (φ, Φ, Φ′) we guess a triple (ω, ω′, a) with
interpretations ω, ω′, and an atom a. Then φ is not an interpolant of Φ wrt. Φ′

if either
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1. ω |= Φ and ω 6|= φ,
2. ω′ |= Φ′ ∪ {φ}, or
3. a ∈ At(φ) \ (At(Φ) ∩ At(Φ′)).

Observe that each of these checks correspond to disproving one item of Defini-
tion 2 and that they can be done in polynomial time. If follows coNP-membership
of the original problem.

For coNP-hardness, we reduce the problem Taut to our problem. An in-
stance to Taut consists of a formula ψ and it has to be decided whether ψ is
tautological. On input ψ we construct the instance (φ, Φ, Φ′) for our problem (let
a be a fresh atom not appearing in ψ) with

φ = a Φ = {ψ → a} Φ′ = {¬a}

It remains to show that ψ is tautological if and only if φ is an interpolant of Φ
wrt. Φ′. Assume that ψ is tautological, then it follows Φ |= a. Obviously, Φ′∪{a}
is inconsistent and φ only contains atoms of the shared vocabulary. It follows
that φ is an interpolant of Φ wrt. Φ′. The other direction is analogous. ut

In [16] it is shown that, essentially, the size3 of an interpolant φ ∈ SI(Φ,Φ′) is
probably not bound polynomially in the size of both Φ and Φ′ (very surprising
results would follow in this case). This makes a characterisation of the com-
plexity of various other computational problems hard. For example, a standard
approach to decide whether some given formula φ would not be the strongest
(weakest) interpolant, would be to guess another formula φ′ (e. g., the actual
strongest/weakest interpolant) and verify that φ′ is an interpolant and φ′ |= φ
(φ |= φ′). However, as φ′ might be of exponential size this is not feasible to show
membership in some class of the polynomial hierarchy or even Pspace. We can
therefore only provide a straightforward upper bound for the complexity of these
and other problems of relevance to us.

Theorem 4. Let Φ and Φ′ be sets of formulas.

1. For a formula φ, the problem of deciding whether φ = Strongest(Φ,Φ′) is in
Expspace.

2. For a formula φ, the problem of deciding whether φ = Weakest(Φ,Φ′) is in
Expspace.

3. The problem of determining Strongest(Φ,Φ′) is in FExpspace.
4. The problem of determining Weakest(Φ,Φ′) is in FExpspace.
5. The problem of counting |SI(Φ,Φ′)| is in FExpspace.

Proof. We first show 5. For that, we enumerate (by reusing space) every subset
M ⊆ Ω(At) of interpretations (note that every interpretation is of polynomial
size and there are exponentially many interpretations; therefore M is of expo-
nential size). Each such set M characterises a formula φM and its equivalence
class [φM ] via Mod(φM ) = M . We can then easily verify whether φM is an in-
terpolant of Φ wrt. Φ, see Theorem 3 and the fact that coNP ⊆ Expspace. In

3 More specifically, the smallest size of a φ′ ∈ [φ].
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the positive case we add 1 to some counter. After enumerating all possible M ,
the counter is exactly the number |SI(Φ,Φ′)|.

In order to prove 1–4, the above algorithm can easily be adapted. For 1.,
whenever we have verified a formula φM to be an interpolant, we can check
whether φM |= φ and φ 6|= φM . In that case, φ cannot be the strongest interpolant.
Case 2 is analogous. Cases 3-4 can be realised by keeping track of the strongest
(weakest) interpolant found so far and always comparing it newly discovered
interpolants. ut

7 Summary and Conclusion

We investigated the problem of measuring disagreement in belief merging sce-
narios. For that, we made use of the concept of Craig interpolants and defined
disagreement measures that consider the number of semantically equivalent in-
terpolants between two knowledge bases and the information content in the
strongest and weakest interpolants. We showed that our measures satisfy a num-
ber of desirable properties and we briefly discussed the computational complexity
of related problems.

For future work, we will investigate the possibility of defining further mea-
sures based on interpolation and investigate their properties. Moreover, a deeper
analysis of the differences of our measures with the measures proposed by Po-
tyka [17] is needed. Precisely, our approach based on interpolants has a semantic
perspective in assessing the culpability degree of the inconsistencies between two
knowledge bases. We shall investigate what properties this semantic perspective
brings upon these inconsistency measures. We will also explore algorithmic ap-
proaches to compute our measures and investigate applying our ideas to the area
of inconsistency measurement [19].
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