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Abstract. We investigate the space of ordinal semantics, where the status of an
argument is interpreted by a natural number. In doing so we do not only consider the
usual acceptability-based approach for generalizing classical semantics to multi-
valued semantics, i. e., positioning “undecided” arguments to be in between “in”
and “out” arguments, but also a controversiality-based approach where we interpret
the value “undecided” as being the most controversial status of an argument. We
introduce stratified labelings as a novel semantical approach that follows the idea
of a controversiality-based order of truth-values. We investigate general properties
for ordinal semantics and of our approach of stratified labelings in particular.
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1. Introduction

Computational models of argumentation are non-monotonic reasoning mechanisms that
focus on the interplay of arguments and counterarguments. In abstract argumentation
[Dun95], arguments are represented as atomic entities and the interrelationships between
different arguments are modeled using an attack relation. Usually, semantics are given
to abstract argumentation frameworks in terms of extensions or labelings [CG09]. For a
specific labeling an argument is either accepted, not accepted, or undecided.

In this paper, we introduce stratified labelings that assign to each argument of
an argumentation framework some natural number (or infinity). Other approaches to
weighted semantics such as probabilistic approaches [Thi12,Hun13] or other weighted
approaches [CLS05,ABN13] usually interpret the weight/probability of an argument
with the strength of the argument, i. e., the larger the value the stronger the argument can
be believed. However, we interpret the ranking values as a measure of controversiality,
i. e., the larger the value of an argument the more controversial the argument. If an argu-
ment is classified as “in” in the classical semantics, it usually gets a large value in other
weighted approaches and a low value in our work. If an argument is classified as “out”
it usually gets a small value in other works but in our work as well (an argument that
is clearly “out” is not controversial). And an argument that is classified as “undecided”
usually gets an intermediate value in other works while here it gets a large value, de-
pending on the level of controversiality. To provide a general frame for our discussion,
we introduce the class of ordinal semantics that use natural numbers for assessing the
status of arguments. We explore the space of different approaches that follow this idea



and provide a classification of these approaches in terms of how they order the classical
truth values “in”, “out”, and “undecided”. Furthermore, we discuss, generalize, and ex-
tend several properties already proposed in [ABN13]. We focus then our discussion on
stratified labelings as a means to measure the controversiality of arguments. In summary,
the contributions of this paper are as follows.

1. We introduce and discuss ordinal semantics, extend previously proposed proper-
ties from [ABN13], and introduce the notion of controversiality (Section 3).

2. We present stratified labelings as a specific approach to ordinal semantics and
show their compliance with properties for ordinal semantics (Section 4).

We briefly review abstract argumentation frameworks in Section 2 and conclude with a
summary and a discussion on further works in Section 5. Proofs of technical results can
be found in an online appendix1.

2. Abstract Argumentation

An abstract argumentation framework [Dun95] is a graph AF = (Arg,→) where Arg is
a set of arguments and→ is a relation→⊆ Arg × Arg. For two arguments A,B ∈ Arg
the relation A → B means that argument A attacks argument B. We abbreviate the set
of attackers of A as AttAF(A) = {B ∈ Arg | B → A} and the set of defenders of A as
DefAF(A) = {B ∈ Arg | ∃C ∈ Arg such that C → A and B → C}.

A labeling L [CG09] is a function L : Arg → {in, out, undec} where the value in
means that an argument is accepted, out means that an argument is not accepted, and
undec means that the status of the argument is undecided. Let in(L) = {A | L(A) = in}
and out(L) resp. undec(L) be defined analogously. Different constrains on L can be
imposed in order to realize different semantics:

• L is called admissible if and only if for all arguments A ∈ Arg we have 1.) if
L(A) = out then there is B ∈ Arg with L(B) = in and B → A, and 2.) if
L(A) = in then L(B) = out for all B ∈ Arg with B → A.

• L is called complete if it is admissible and, if L(A) = undec then there is no
B ∈ Arg with B → A and L(B) = in and there is a B′ ∈ Arg with B′ → A and
L(B′) 6= out.

• L is grounded if and only if it is complete and in(L) is minimal.
• L is preferred if and only if it is complete and in(L) is maximal.
• L is stable if and only if it is complete and undec(L) = ∅.

All statements on minimality/maximality are meant to be with respect to set inclusion.

3. Ordinal Semantics of Argumentation Frameworks

Classical semantics for abstract argumentation are three-valued and the three values in,
undec, and out can be ordered totally according to their acceptability through “in <acc
undec <acc out”, cf. [BCPR12]. This means that in is the strongest indicator for an
argument being accepted, out the weakest, and undec is in between those two values.

1http://www.mthimm.de/misc/stratlab_comma2014_proofs.pdf



In the literature, some approaches have been given for filling the space between these
values by a more fine-grained assessment of the strength of an argument, see e. g. [Thi12,
Hun13,ABN13]. However, all these approaches rely on the order in <acc undec <acc
out and assess the arguments’ strength. In this work, we take a more general look at
multi-valued semantics2 for abstract argumentation and the different possibilities of their
interpretation. In particular, let us consider the following variants of ordering the three
truth values (other possible variants are inversions of those):

1. in <acc undec <acc out: This is the standard order of acceptability. Lower truth
values indicate higher acceptance.

2. in <con out <con undec: We call <con the controversiality order. Lower truth
values indicate less controversial arguments.

3. undec <dev in <dev out: This ordering reflects a kind of potential for develop-
ment of arguments where undec is taken to be most important.

By assuming orders (2) or (3) of the values different possibilities and interpretations for
extending them to multi-valued semantics arise. Note that so far only multi-valued se-
mantics for the acceptability order 1) have been proposed. The idea behind the contro-
versiality order <con is that arguments classified as out are less controversial than undec
arguments (although they are not accepted they are uncontroversially classified as out).
The definition of the controversiality order has a direct application in dynamics of argu-
mentation frameworks and, specifically, the notion of enforcement [Bau12]: how much
must an argumentation framework be changed in order to accept a given argument? Ar-
guments uncontroversially classified as out are (basically) more easily enforced. The
idea behind the <dev order becomes clear when considering persuasion scenarios like
election campaigns. There, for a specific party undecided voters are those which are
most addressed in campaigns to win them over, voters which are expected to vote for
the party have to be strengthened but not completely persuaded, and voters which are
expected to not vote for the party are a lost cause anyway. However, we now focus on the
acceptability- and controversiality-order and leave an investigation into the order <dev
for future work.

In order to elaborate on multi-valued semantics, we make use of ordinal semantics,
i. e. semantics that use natural numbers as truth values.

Definition 1. An ordinal ranking λ of an argumentation framework AF = (Arg,→) is
a function λ : Arg → N ∪ ∞. Let Λ(AF) be the set of all ordinal rankings of AF. An
ordinal semantics O is a function that assigns a class of rankings to each argumentation
framework AF = (Arg,→), i. e., O : AF 7→ OAF ⊆ Λ(AF).

In [ABN13], the authors also consider ranking-based semantics of argumentation
frameworks, i. e., they interpret AF = (Arg,→) uniquely in terms of a total preorder on
Arg that expresses acceptability, i. e., taking the order<acc into account. In the following,
we build on the properties proposed by [ABN13], which may or may not be satisfied for a
specific semantics, as a starting point to explore the space of ordinal semantics (adjusted
to fit the framework of ordinal semantics).

The first property, Abstraction, states that isomorphisms between two argumentation
frameworks are apt to carry over ordinal semantics:

2In the context of abstract argumentation, multi-valued semantics refers to semantics with more than three
truth values.



Abstraction (Ab) For any isomorphic argumentation frameworks AF1 = (Arg1,→1)
and AF2 = (Arg2,→2), and for every isomorphism3 ϕ : Arg1 → Arg2 of AF1 and
AF2, it holds that O(AF2) = O(AF1) ◦ ϕ−1 = {λ ◦ ϕ−1 | λ ∈ O(AF1)}.

The next property, Irrelevance (Ir), corresponds to Independence in [ABN13]. Let
WCom(AF) be the set of all subgraphs of AF that arise from (finite) unions of weakly
connected components of AF; in particular, each weakly connected component of AF
is contained in WCom(AF). Note that each BF ∈ WCom(AF) contains all relevant
information for classical semantics, as it contains all relevant edges.

Irrelevance (Ir) For all argumentation frameworks AF such that O(AF) 6= ∅, and for
any BF ∈ WCom(AF), for all λ′ ∈ O(BF), there is λ ∈ O(AF ) such that the
following conditions are fulfilled for any B1,B2 ∈ BF: (i) λ′(B1) = λ′(B2) iff
λ(B1) = λ(B2) and (ii) λ′(B1) ≤ λ′(B2) iff λ(B1) ≤ λ(B2).

The next property is a property for both acceptability and controversiality-based
ordinal semantics as it deems unattacked arguments as having a lowest value in a ranking.

Void Precedence (VP) For all argumentation frameworks AF = (Arg,→), for all λ ∈
O(AF), and for all A,B ∈ Arg the following holds: If A is not attacked but B is
attacked, then λ(A) < λ(B).

However, (VP) is not indebatable because one might deem an argument that has sur-
vived attacks not to be worse than arguments that have not proven their strength against
counterarguments, both in terms of acceptability and controversiality. So, we propose a
weakened version of (VP):

Weak Void Precedence (WVP) For all argumentation frameworks AF = (Arg,→), for
all λ ∈ O(AF), and for all A,B ∈ Arg the following holds: If A is not attacked at
all, then λ(A) ≤ λ(B).

The next property basically states that undefended arguments are to be ranked higher
(i. e., worse) than defended arguments, given that they are attacked by the same number
of arguments.

Defense Precedence (DP) For all argumentation frameworks AF = (Arg,→), for
all λ ∈ O(AF), and for all A,B ∈ Arg the following holds: If |AttAF(A)| =
|AttAF(B)| and DefAF(A) = ∅, but DefAF(B) 6= ∅, then λ(A) > λ(B).

For acceptability-based semantics this property is intuitive, but it is highly debatable in
terms of controversiality. Consider the following example.

Example 1. Consider the argumentation framework AFdp depicted in Figure 1a and
assume λ ∈ O(AFdp) where O satisfies (DP). Note that AttAFdp

(A1) = DefAFdp
(A1) =

{A1} and thatA3 is attacked, AttAFdp
(A3) = {A2} but not defended, DefAFdp

(A3) = ∅.
In this situation, (DP) implies λ(A1) < λ(A3). However, A1 should be regarded as
highly controversial as it is attacking itself.

3A function ϕ : Arg1 → Arg2 is an isomorphism iff A →1 B ⇐⇒ ϕ(A) →2 ϕ(B).
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Figure 1. The argumentation frameworks from Examples 1, 2, and 3.

The next property simply compares the number of attacks to an argument as prefer-
ence criterion.

Cardinality Precedence (CP) For all argumentation frameworks AF = (Arg,→), for
all λ ∈ O(AF), and for all A,B ∈ Arg the following holds: If |AttAF(A)| <
|AttAF(B)| then λ(A) < λ(B).

This property is debatable for both acceptability- and controversiality-based semantics
as it only considers the number of attackers. In particular for the case of controversiality-
based semantics consider the following example.

Example 2. Consider the argumentation framework AFcp depicted in Figure 1b and
assume λ ∈ O(AF) where O satisfies (CP). Then it follows λ(A4) > λ(A2). Therefore,
although A2 is highly controversial due to the self-attack, A4 has a higher rank due to
the higher number of attacks.

The last property from [ABN13] to be considered here is Quality Precedence:

Quality Precedence (QP) For all argumentation frameworks AF = (Arg,→), for all
λ ∈ O(AF), and for all A,B ∈ Arg the following holds: If there is C ∈ AttAF(B)
such that for all D ∈ AttAF(A), λ(C) < λ(D), then λ(A) < λ(B).

In contrast to (CP) the property (QP) considers the quality—in this context this means
the rank value—of the attackers of two different arguments to decide which is more
preferred.

Example 3. Consider the argumentation framework AFqp depicted in Figure 1c and
assume λ ∈ O(AF) whereO satisfies (VP) and (QP). From (VP) it follows that λ(A1) <
λ(A2), λ(A1) < λ(A3), λ(A1) < λ(A4). By (QP) it follows that λ(A4) < λ(A2).
Again, due to A4’s self-attack, this does not seem to be justified.

For space restrictions we do not discuss the remaining properties (Strict) Counter-
Transitivity and Distributed-Defense Precedence from [ABN13]. However, we now in-
troduce a new property that is more apt to describe controversiality-based semantics. As
could be observed in Examples 1, 2, and 3, self-attacks are a strong indicator of con-
troversial arguments. We therefore consider the following property as a desideratum for
controversiality-based semantics.

Self Loop (SL) For all argumentation frameworks AF = (Arg,→), for all λ ∈ O(AF),
for all A ∈ Arg with A → A we have λ(A) =∞.

Note that some properties are mutually exclusive, i. e. they cannot be all satisfied by a
specific semantics at the same time, such as (QP) and (CP), see [ABN13] for a discussion.



4. Stratified Labelings

In the following, we give a concrete implementation of an ordinal semantics following
the idea of controversiality outlined above. The basic notion is that of a stratified labeling
as defined as follows.

Definition 2. Let AF = (Arg,→) be an abstract argumentation framework and let σ be
a semantics (such as grounded or preferred semantics). A σ-stratified labeling S for AF
is a function S : Arg→ N ∪ {∞} such that there is a σ-labeling L for AF and

1. if in(L) = ∅ then S(A) =∞ for all A ∈ Arg.
2. if in(L) 6= ∅ then

(a) S(A) = 0 for all A ∈ in(L) and
(b) there is a σ-stratified labeling S′ for AF′ = (Arg′,→ ∩(Arg′ × Arg′)) with

Arg′ = Arg\ in(L) such that S(A) = 1+S′(A) for allA ∈ Arg\ in(L) (with
1 +∞ =∞).

A σ-stratified labeling S is called finite if S−1(∞) = ∅.

In other words, a σ-stratified labeling S can be constructed by combining several
ordinary σ-labelings. First, all in-labeled arguments of a σ-labeling on the original ar-
gumentation framework AF constitute exactly the arguments at rank zero. Then all ar-
guments labelled in by that labeling are removed from the framework. Afterwards, all
in-labeled arguments of a σ-labeling of the remaining framework obtain the rank one.
This process is repeated until the framework is either empty, or we select a σ-labeling
which labels no argument in. Then the remaining arguments get the maximal rank∞.

The idea behind σ-stratified labelings is to measure the amount of controversiality or
indeterminateness of assigning the label in to an argument. In particular, a value S(A) =
0 means that an argument is uncontroversially accepted. The larger the value the more
controversial an argument is. Note that, in particular, there may be arguments which are
considered out by the initial σ-labeling L but classified with rank one by a corresponding
stratified labeling while undec arguments may get even larger values.

Stratified labelings define an ordinal semantics for argumentation frameworks:

Definition 3. Let σ be a semantics. The ordinal σ-stratified semantics Ostratσ is defined
by Ostratσ (AF) = {S | S is a σ-stratified labeling for AF}.

Before we continue with analyzing the formal properties of the ordinal σ-stratified
labeling we have a look at some examples.

Example 4. The grounded-stratified labeling for the argumentation framework depicted
in Figure 2a is SgrAF with SgrAF(A1) = 0, SgrAF(A2) = 1, and SgrAF(A3) = 2. The grounded
labeling of AF assigns toA1 the value in and to all other arguments the value out. There-
fore, A1 gets the value 0. Removing A1 from AF yields a framework consisting of argu-
ments A2,A3 and A2 attacking A3. The grounded labeling of this framework assigns to
A2 the value in and to A3 the value out. Therefore, A2 gets the value 1. Finally, A3 gets
the value 2.

Example 5. The grounded-stratified labeling for the argumentation framework depicted
in Figure 2b is SgrAF with SgrAF(A1) = 0, SgrAF(A2) = 1, SgrAF(A3) = 3, SgrAF(A4) = 1, and
SgrAF(A5) = 2.
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Figure 2. Argumentation frameworks from Examples 4 and 5

The last example also shows the advantage of using stratified labelings instead of
ordinary labelings. While for AF from Example 5 only argument A1 is labelled in (with
respect to grounded semantics), A2 is labeled out, and all other arguments are labeled
undec, the grounded-stratified labeling gives a more graded assessment of the arguments’
controversiality.

Proposition 1. Let AF = (Arg,→) be an argumentation framework.

1. The grounded-stratified labeling SgrAF always exists and is uniquely determined.
2. If A → A for some A ∈ Arg then S(A) = ∞ for every semantics σ and σ-

stratified labeling S.
3. If AF contains a cycle A1 → . . .An → A1 with odd n that is not attacked from

outside, i. e., AttAF(Ai) ⊆ {A1, . . . ,An} for i = 1, . . . , n, and contains no even-
length sub-cycles then S(A1) = . . . = S(An) = ∞ for every semantics σ and
σ-stratified labeling S.

4. Every stable-stratified labeling S is finite, i. e., S(A) <∞ for all A in Arg.

The following characterization of a σ-stratified labeling in terms of sequences of
arguments and labelings gives more insight into the construction of σ-stratified labelings.

Proposition 2. Each σ-stratified labeling S of an argumentation framework AF =
(Arg,→) is characterized by a set of nested subsets Arg = A0 ⊇ A1 ⊇ . . . ⊇ Ak ⊇ A−1
of Arg with k ≥ −1, and an appertaining vector (L0, L1, . . . , Lk, L−1) of σ-labelings
Li such that

1. Li is a labeling on (Ai,→ ∩ (Ai ×Ai)), −1 ≤ i ≤ k;
2. in(Li) = Ai\Ai+1 6= ∅, 0 ≤ i < k, and in(Lk) = Ak\A−1;
3. for A 6∈ A−1, S(A) = max{i | A ∈ Ai, 0 ≤ i ≤ k};
4. S(A) = S(B) iff A,B are elements of exactly the same Ai for −1 ≤ i ≤ k;
5. S(A) ≤ S(B) iff A ∈ Ai implies B ∈ Ai for all −1 ≤ i ≤ k;
6. S(A) =∞ for all A ∈ A−1.

Note that in the above proposition k = −1 is possible, in which case we have
A−1 = Arg. Also, A−1 can be empty, which is equivalent to S being finite.

Theorem 1. Let σ be a semantics. Then Ostratσ satisfies (AB), (Ir), (WVP), and (SL).

In general, the ordinal σ-stratified semantics does not satisfy (VP), (DP), (CP),
and (QP). This is, however, desired as stratified labelings follow the approach of a
controversiality-based semantics (counterexamples can be constructed easily from Ex-
amples 1, 2, and 3).



5. Summary and Discussion

In this paper, we introduced ordinal semantics as a general means to discuss multi-valued
semantics for abstract argumentation frameworks. We discussed a series of properties for
approaches to ordinal semantics and, in particular, investigated the differences between
acceptability-based and controversiality-based semantics. We introduced stratified label-
ings as a novel approach that follows the idea of a controversiality-based assessment of
arguments and we investigated their properties.

In general, the approach in [ABN13] differs from ours in various respects: First,
we consider classes of ordinal rankings for argumentation frameworks and not just one
(more general) ranking. Second, those authors define a ranking-based semantics in order
to assess the acceptability of an argument while we aim at assessing the controversiality
of an argument. Other properties might be more useful and it is up to future work to
develop and investigate such properties. Other graded semantical approaches such as
[CLS05,Thi12,Hun13] also consider the acceptability-based point of view.

In [Wey12], Weydert defines so-called ranking models for abstract argumenta-
tion frameworks. He associates a kind of conditional with each argument, symbolizing
premise and claim of the argument, and interprets attack in terms of (generalized) ordinal
conditional functions. The distinguishing difference to our approach is that we assign
ranking degrees to abstract arguments, not to the propositional content of arguments.
Moreover, in our framework, these ranking degrees are computed solely on the base of
the abstract topological structure of the argumentation graph whereas in [Wey12], rank-
ings are induced partly by the conditionals associated with the arguments, i. e., by the
internal structures of the arguments.
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