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Abstract. Consolidation describes the operation of restoring con-
sistency in an inconsistent knowledge base. Here we consider this
problem in the context of probabilistic conditional logic, a language
that focuses on probabilistic conditionals (if-then rules). If a know-
ledge base, i. e., a set of probabilistic conditionals, is inconsistent
traditional model-based inference techniques are not applicable. In
this paper, we develop an approach to repair such knowledge bases
that relies on a generalized notion of a model of a knowledge base
that extends to classically inconsistent knowledge bases. We define a
generalized approach to reasoning under maximum entropy on these
generalized models and use it to repair the knowledge base. This ap-
proach is founded on previous work on inconsistency measures and
we show that it is well-defined, provides a unique solution, and sat-
isfies other desirable properties.

1 Introduction
Setting up a knowledge base for e. g. an expert system is usually
a distributed task that involves merging information from different
sources. In this process, inconsistencies easily arise as different ex-
perts may have different opinions or beliefs about their field of ex-
pertise. Although these inconsistencies often affect only a small por-
tion of the joint knowledge base or emerge from only small differ-
ences in the experts’ beliefs, they cause severe damage. Therefore,
reasoning under inconsistency is an important field in knowledge
representation and reasoning and there are many approaches that deal
with this issue such as paraconsistent and default logics [14], belief
revision and information fusion [4]. Here, we employ probabilistic
conditional logic [7] for knowledge representation. The basic notion
of probabilistic conditional logic is that of a probabilistic conditional
which has the form (ψ |φ)[d] with the commonsense meaning “if φ is
true thenψ is true with probability d”. A popular choice for reasoning
with sets of probabilistic conditionals is model-based inductive reas-
oning based on the principle of maximum entropy (ME-reasoning)
[11, 7].

In this paper, we consider the problem of consolidation [4] in prob-
abilistic conditional logic. Consolidation is the operation of min-
imally changing an inconsistent knowledge base (or belief set in a
wider context) in order to restore consistency. Consolidation oper-
ators can (among others) be used to realize operators for merging
by applying the consolidation operator to the join of a set of know-
ledge bases. For classical logics, this is usually handled by removing
some minimal set of formulas from the knowledge base such that
the remaining set is consistent, cf. [5]. In a probabilistic environ-
ment, there is another possibility for achieving consistency besides
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removal of probabilistic conditionals, namely, modification of prob-
abilities. More specifically, given an inconsistent knowledge base
K = {(ψ1 |φ1)[d1], . . . , (ψm |φm)[dm]} we aim at finding a con-
sistent knowledge base K′ = {(ψ1 |φ1)[d′1], . . . , (ψm |φm)[d′m]}
that is qualitatively the same as K and is closest to K given some
notion of distance on the probabilities d1, . . . , dn. Here, we build on
work on inconsistency measurement [17, 13] to define a consolida-
tion operator. For this purpose, we generalize the notion of a model
of a knowledge base by considering those probability functions that
are as close as possible to satisfying a knowledge base in the clas-
sical sense. We use these generalized models to define a generalized
version of ME-reasoning that is equivalent to classical ME-reasoning
for consistent knowledge bases but uses the generalized models in the
case of inconsistent knowledge bases. We then define a consolidation
operator that modifies the original probabilities of the conditionals by
taking the probabilities suggested by the generalized ME-reasoning
approach. In summary, the contributions of this paper are as follows:

1. We formally introduce the problem of consolidation for probabil-
istic conditional logic and adapt desirable properties for consolid-
ation operators from the literature on belief merging (Section 3).

2. We solve the problem of consolidation by exploiting previous
work on inconsistency measurement and introducing an well-
defined consolidation operator (Section 4). In particular:

(a) we generalize the notion of a model and extend ME-reasoning
to include inconsistent knowledge bases by considering prob-
ability functions that minimize inconsistency (Section 4.1).

(b) we use generalized ME-reasoning for consolidating a know-
ledge base and show that it complies with most desirable prop-
erties for consolidation operators (Section 4.2).

(c) we show that our approach has the same asymptotic worst-case
complexity like classical ME-reasoning and provide a problem
transformation that can be used to solve the problem more effi-
ciently for certain distance measures (Section 4.3).

Proofs of technical results and links to the implementation can be
found in an online appendix3.

2 Probabilistic Conditional Logic
Let At be a propositional signature, i. e. a finite set of propositional
atoms. Let L(At) be the corresponding propositional language gen-
erated by the atoms in At and the connectives ∧ (and), ∨ (or), and
¬ (negation). For φ, ψ ∈ L(At) we abbreviate φ ∧ ψ by φψ and
¬φ by φ. The symbols > and ⊥ denote tautology and contradic-
tion, respectively. We use possible worlds for interpreting sentences
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in L(At). A possible world ω is a complete conjunction, i. e. a con-
junction that contains for each a ∈ At either a or ¬a. Let Ω(At)
denote the set of all possible worlds. A possible world ω ∈ Ω(At)
satisfies an atom a ∈ At, denoted by ω |= a if and only if a appears
in ω. The entailment relation |= is extended to arbitrary formulas in
L(At) in the usual way. Formulas ψ, φ ∈ L(At) are equivalent, de-
noted by φ ≡ ψ, if and only if ω |= φ whenever ω |= ψ for every
ω ∈ Ω(At).

The central notion of probabilistic conditional logic [7] is that of
a probabilistic conditional.

Definition 1. If φ, ψ ∈ L(At) and d ∈ [0, 1] then (ψ |φ)[d] is called
a probabilistic conditional.

A probabilistic conditional c = (ψ |φ)[d] is meant to describe a
probabilistic if-then rule, i. e. the informal interpretation of c is that
“If φ is true then ψ is true with probability d” (see below). If φ ≡ >
we abbreviate (ψ |φ)[d] by (ψ)[d]. Further, for c = (ψ |φ)[d] we
denote with pr(c) = d the probability of c. Let (L(At) | L(At))pr

denote the set of all probabilistic conditionals wrt. L(At).

Definition 2. A knowledge base K is an ordered finite subset
of (L(At) | L(At))pr , i. e., it is K = 〈c1, . . . , cm〉 for some
c1, . . . , cn ∈ (L(At) | L(At))pr .

We impose an ordering on the conditionals in a knowledge base
K only for technical convenience. The order can be arbitrary and
has no further meaning other than to enumerate the conditionals of
a knowledge base in an unambiguous way. For knowledge bases
K = 〈c1, . . . , cm1〉, K′ = 〈c′1, . . . , c′m2

〉 and a probabilistic con-
ditional c we define c ∈ K via c ∈ {c1, . . . , cm1}, K ⊆ K′ via
{c1, . . . , cm1} ⊆ {c′1, . . . , c′m2

}, and K = K′ via {c1, . . . , cm1} =
{c′1, . . . , c′m2

}. The union of knowledge bases is defined via con-
catenation and removal of duplicates. Let At(K) denote the set of
propositional atoms appearing in K.

Semantics are given to probabilistic conditionals by probability
functions on Ω(At). Let P(At) denote the set of all probability func-
tionsP : Ω(At)→ [0, 1] with

∑
ω∈Ω(At) P (ω) = 1. For φ ∈ L(At),

we define its probability as the probability of the satisfying worlds,
i.e., P (φ) =

∑
ω|=φ P (ω). If P ∈ P(At) then P satisfies a prob-

abilistic conditional (ψ |φ)[d], denoted by P |=pr (ψ |φ)[d], if and
only if P (ψφ) = dP (φ). Note that we do not define probabilistic
satisfaction via P (ψ |φ) = P (ψφ)/P (φ) = d in order to avoid a case
differentiation for P (φ) = 0, see [11] for further justification. A
probability function P satisfies a knowledge baseK (or is a model of
K), denoted by P |=pr K, if and only if P |=pr c for every c ∈ K.
Let Mod(K) ⊆ P(At) be the set of models of K. If Mod(K) = ∅
then K is inconsistent.

A probabilistic conditional (ψ |φ)[d] is normal [17] if and only
if there are ω, ω′ ∈ Ω(At) with ω |= ψφ and ω′ |= ψφ. In other
words, a probabilistic conditional c is normal if it is satisfiable but
not tautological.

Example 1. The probabilistic conditionals c1 = (> | a)[1] and
c2 = (a | a)[0.1] are not normal as c1 is tautological (there is no
ω ∈ Ω(At) with ω |= >a as >a ≡⊥) and c2 is not satisfiable (there
is no ω ∈ Ω(At) with ω |= aa as aa ≡⊥).

As a technical convenience, we consider only normal probabilistic
conditionals here, so let K be the set of all non-empty knowledge
bases of (L(At) | L(At))pr that contain only normal probabilistic
conditionals.

Knowledge basesK1,K2 are extensionally equivalent, denoted by
K1 ≡e K2, if and only if Mod(K1) = Mod(K2). Note that the

notion of extensional equivalence does not distinguish between in-
consistent knowledge bases, i. e., for inconsistent K1 and K2 it al-
ways holds that K1 ≡e K2. Consequently, we also consider an-
other equivalence relation for knowledge bases. Knowledge bases
K1,K2 are semi-extensionally equivalent, denoted by K1 ≡s K2,
if and only if there is a bijection σK1,K2 : K1 → K2 such that
{c} ≡e {σK1,K2(c)} for every c ∈ K1. Note that K1 ≡s K2 im-
plies K1 ≡e K2 but the other direction is not true in general.

One way of reasoning with knowledge bases is by using model-
based inductive reasoning techniques [11]. For example, reasoning
based on the principle of maximum entropy selects among the mod-
els of a knowledge baseK the unique probability function with max-
imum entropy. More formally, let the entropy H(P ) of a probability
function P ∈ P(At) be defined as

H(P ) = −
∑
ω∈Ω

P (ω) logP (ω)

Then the ME-model ME(K) of a consistent knowledge base K is
defined as

ME(K) = arg max
P∈Mod(K)

H(P ) (1)

Note that the ME-model ME(K) of a consistent knowledge base K
always exists, is uniquely defined, and satisfies many commonsense
reasoning properties [11, 7]. However, a necessary requirement for
the application of model-based inductive reasoning techniques is the
existence of at least one model of a knowledge base. In order to
reason with inconsistent knowledge bases the inconsistency has to
be resolved first.

3 Principles for Knowledge Base Consolidation
A consolidation operator [4] Γ is a function that maps a pos-
sibly inconsistent knowledge base K to a consistent knowledge base
K′ = Γ(K). In general, there are three basic approaches (and com-
binations thereof) for restoring consistency in probabilistic condi-
tional logic, cf. [3]. First, one can remove conditionals such that
Γ(K) ⊆ K. Second, one can modify the qualitative structure of
conditionals, i. e., a conditional (ψ |φ)[d] is modified to (ψ′ |φ′)[d].
Thirdly, one can modify the quantitative part of conditionals, i. e.,
a conditional (ψ |φ)[d] is modified to (ψ |φ)[d′]. Here, we follow
the third paradigm and assume that for a consolidation function
Γ and a knowledge base K = 〈(ψ1 |φ1)[d1], . . . , (ψn |φn)[dn]〉
it holds that Γ(K) = 〈(ψ1 |φ1)[d′1], . . . , (ψn |φn)[d′n]〉. Pursu-
ing this approach is valid as there are always d′1, . . . , d′n such that
〈(ψ1 |φ1)[d′1], . . . , (ψn |φn)[d′n]〉 is consistent [17]. These consol-
idation functions have the advantage of allowing a graded consolida-
tion of a knowledge base, as opposed to the other two variants which
can only change a knowledge base in a qualitative way. We will call
this type of consolidation functions quantitative consolidation func-
tions.

In the following, we present some principles that should be
satisfied by a meaningful consolidation operator Γ. For that,
we need some further notation. Let K be a knowledge base.
If ~x ∈ [0, 1]|K| we denote by K[~x] the knowledge base that
is obtained from K by replacing the probabilities of the con-
ditionals in K by the values in ~x, respectively. More pre-
cisely, if K = 〈(ψ1 |φ1)[d1], . . . , (ψm |φm)[dm]〉 then K[~x] =
〈(ψ1 |φ1)[x1], . . . , (ψm |φm)[xm]〉 for ~x = 〈x1, . . . , xm〉 ∈
[0, 1]n. Similarly, for a single probabilistic conditional c = (ψ |φ)[d]
and x ∈ [0, 1] we abbreviate c[x] = (ψ |φ)[x].



Knowledge bases K1,K2 are qualitatively equivalent, denoted by
K1
∼=q K2, if and only if |K1| = |K2| and there is a ~x ∈ [0, 1]|K1|

such that K1 = K2[~x]. Note that ∼=q is an equivalence relation.

Definition 3. Let K = K[~x] be a knowledge base. Let ~y, ~z ∈
[0, 1]|K| and let K1 = K[~y],K2 = K[~z]. Then K1 ≺K K2 if and
only if for 1 ≤ i ≤ |K| it holds that |~xi − ~yi| ≤ |~xi − ~zi| and for at
least one i it holds that |~xi − ~yi| < |~xi − ~zi|.

The relation ≺K is a partial order among qualitatively equivalent
knowledge bases wrt. their overall distance to the knowledge base
K. In other words, it holds that K1 ≺K K2 if and only if the probab-
ility of each conditional inK1 is as least as close to the probability of
the corresponding conditional in K as the corresponding conditional
in K2 and there is at least one conditional in K1 with a probability
strictly closer to the probability of the corresponding conditional in
K as the corresponding conditional in K2.
We will consider some rationality postulates for consolidation oper-
ators from the field of belief merging. The following postulates are
partially rephrased postulates from [6] and [9]. Let K,K1,K2 ∈ K.

Success. Γ(K) is consistent.
Consistency. If K is consistent then Γ(K) = K.
Irrelevance of syntax. If K1 ≡s K2 then Γ(K1) ≡s Γ(K2).
Non-dictatorship. If c is non-tautological then there is a K with
c ∈ K such that c /∈ Γ(K).

Pareto-optimality. There is no consistent K′ with K′ ≺K Γ(K).
Weak IIA. If At(K1)∩At(K2) = ∅ then Γ(K1 ∪K2) ≡e Γ(K1)∪

Γ(K2).
IIA. If Γ(K1) ∪ Γ(K2) is consistent then Γ(K1) ∪ Γ(K2) ≡e

Γ(K1 ∪ K2).
Continuity. For each sequence (K[~xn])n∈N of knowledge bases

with limn→∞K[~xn] = K[~x], it holds that limn→∞ Γ(K[~xn]) =
Γ(K[~x]).

The property success describes our basic demand for a consolid-
ation function, i. e., that the result of the consolidation is consistent.
The property consistency says that an already consistent knowledge
base needs no modification. The property irrelevance of syntax de-
mands that restoring consistency of semi-extensionally equivalent
knowledge bases yield again semi-extensionally equivalent know-
ledge bases. Demanding non-dictatorship implies that there is no
non-tautological probabilistic conditional that is never modified in
any knowledge base. The property Pareto-optimality implements the
minimal change paradigm: from all solutions to the consolidation
problem the result should be as close to the original knowledge base
as possible. The properties Weak IIA and IIA realize different views
on the property indifference of irrelevant alternatives [6]. The prop-
erty Weak IIA demands that for knowledge bases K1 and K2 that
represent information about different topics, i. e., that do not share
some proposition, the consolidation Γ(K1 ∪K2) should be the same
as Γ(K1) ∪ Γ(K2). The property IIA demands the same conclusion
given that Γ(K1) ∪ Γ(K2) is consistent. The final property continu-
ity demands that the consolidation function behaves continuously on
changes of probabilities. Intuitively, this means that for K1 and K2

with K1
∼=q K2 and K1 is close to K2 wrt. ≺K then Γ(K1) is also

close to Γ(K2) wrt. ≺K. Consider also the following relationship
between the different notions of indifference of irrelevant alternat-
ives.

Proposition 1. Let Γ satisfy success. If Γ satisfies IIA then Γ satisfies
Weak IIA.

4 Probabilistic Knowledge Base Consolidation
We now present our solution to the problem of probabilistic know-
ledge base consolidation. The core idea of our approach relies on
the use of inconsistency measures for probabilistic conditional lo-
gic [13, 17, 12] and the generalization of the ME-model to incon-
sistent knowledge bases. An inconsistency measure I is a function
I : K → [0,∞) that assigns to a knowledge base K a value I(K)
with the intended meaning that the larger the value I(K) the larger
the inconsistency in K, with I(K) = 0 meaning that K is consist-
ent. Inconsistency measures for probabilistic logics, such as the ones
defined in [13, 17, 12], usually rely on the idea to measure the min-
imal changes needed to make an inconsistent knowledge base con-
sistent. We exploit this idea here by considering those probability
functions that are used for obtaining this minimal change as gener-
alized models of the inconsistent knowledge base and use them to
define the consolidated knowledge base by a generalized version of
the ME-model.

4.1 Generalized ME-Reasoning
For defining generalized ME-Reasoning and thus our consolidation
operator we use the minimal violation inconsistency measure pro-
posed in [13] for two reasons. First, this measure is computation-
ally attractive as it relies on solving convex optimization problems
instead of non-convex ones as the measures proposed in [17, 12].
Second, this measure allows to uniquely define a consolidated know-
ledge base in an information-theoretic appealing way due to the prop-
erties of its solution space.

The minimal violation inconsistency measure is defined as fol-
lows. Recall that a probability function P satisfies a probabilistic
conditional (ψ |φ)[d] if and only if P (ψφ) = dP (φ) which is
equivalent to P (ψφ) − dP (φ) = 0. Observe that if a knowledge
base K = 〈(ψ1 |φ1)[d1], . . . , (ψm |φm)[dm]〉 is inconsistent there
is no probability function P with P (ψiφi) − diP (φi) = 0 for all
i = 1, . . . ,m. For each conditional (ψi |φi)[di] (i = 1, . . . ,m) we
introduce a variable xi and set P (ψiφi) − diP (φi) = xi. Given
some real vector norm ‖ · ‖ we define the distance of a probability
function P to a knowledge base K wrt. ‖ · ‖ as ‖〈x1, . . . , xn〉‖. For
the minimal violation inconsistency measure IpΠ (for p ≥ 1) we use
the p-norm ‖ · ‖p for this purpose which is defined as

‖(x1, . . . , xm)‖p = p

√√√√ m∑
j=1

|xj |p

For p→∞ (we also write p =∞) we obtain the maximum-norm:

lim
p→∞

‖(x1, . . . , xm)‖p = ‖(x1, . . . , xm)‖∞

= max{|x1|, . . . , |xm|}

Now, IpΠ(K) for some knowledge base K is defined as the min-
imal distance among all probability functions. More formally, let
K = 〈(ψ1 |φ1)[d1], . . . , (ψm |φm)[dm]〉 be a knowledge base and
assume some canonical enumeration of the possible worlds of our
language, i. e., Ω(At) = {ω1, . . . , ωn} with |Ω(At)| = n. Let
~x = 〈x1, . . . , xm〉 be a vector of variables and consider

P (ψiφi)− diP (φi) = xi

which is equivalent to
n∑
j=1

P (ωj)(1φiψi(ωj)(1− di)− 1ψiφi
(ωj)di) = xi (2)



where for a formula F the indicator function 1F (ω) maps to 1 iff
ω |= F and to 0 otherwise. Note that (2) is a linear equation and
the coefficients of P (ωj) are fixed by the knowledge baseK. We can
therefore write the set of equations (2) for i = 1, . . . ,m as AKP =
~x whereAK = (a)ij ∈ Rm×n is the characteristic matrix ofK with

aij = (1φiψi(ωj)(1− di)− 1ψiφi
(ωj)di)

Then we define IpΠ(K) for p ≥ 1 through

IpΠ(K) = min{‖~x‖p | AKP = ~x for some P ∈ P(At)}

The measure IpΠ satisfies a series of commonsense properties desir-
able for inconsistency measures and has been thoroughly investigated
in [13]. The choice of the actual p ≥ 1 influences how the violation
of a probability function wrt. particular probabilistic conditionals is
distributed. Note that the i-th component in the vector AKP corres-
ponds to the deviation of the i-th probabilistic conditional in K from
0 (its violation by P ). For p = 1, a lower total violation might be
obtained, but the violation of some conditionals can be rather ex-
treme. As p grows, higher violations are penalized more heavily and
the violation can be expected to be more distributed among the con-
ditionals.

We use IpΠ to define a generalized notion of a model of a know-
ledge base by considering those probability functions as generalized
models that minimize the overall violation.

Definition 4. LetK be a knowledge base and P ∈ P(At) and p ≥ 1.
Then P is a generalized model of K wrt. to the p-norm, denoted by
P |≈pK, if and only if ‖AKP‖p = IpΠ(K). Let GModp(K) = {P ∈
P(At) | P |≈pK} be the set of generalized models of K.

The following proposition states that the generalized models
GModp(K) indeed generalize the conventional definition of models.

Proposition 2. For every p ≥ 1, if K is consistent then
GModp(K) = Mod(K), that is, for consistent K the generalized
models of K are exactly the models of K.

The following lemma states that, for 1 < p < ∞, the violation
vector ~xpK = AKP is identical for all P ∈ GModp(K). Hence,
in this case, we can simplify the condition ‖AKP‖p = IpΠ(K) in
Definition 4 by the linear equation AKP = ~xpK.

Lemma 1. Let K be a knowledge base and let 1 < p < ∞. Let
P ∈ GModp(K) be a generalized model and let ~x = AKP . Then it
holds AKP ′ = ~x for all P ′ ∈ GModp(K) and we call ~x = ~xpK the
violation vector of K.

The set of models of a knowledge base Mod(K) has some features
that makes it attractive for model-based reasoning techniques such
as ME-reasoning. For instance, the existence and uniqueness of the
ME-model is due to the compactness and convexity of Mod(K), cf.
[11, 7]. Be reminded that a set X ⊆ Rn is convex if for x1, x2 ∈ X
it also holds that δx1 + (1 − δ)x2 ∈ X for every δ ∈ [0, 1] and X
is compact if it is both closed and bounded. A set X is closed if for
every converging sequence x1, x2, . . . with xi ∈ X (i ∈ N) we have
that limi→∞ xi ∈ X and X is bounded if it is contained in a ball
Br ⊆ Rn of finite radius r.

The next lemma states that GModp(K) has exactly the same de-
sirable properties as the set of conventional models.

Lemma 2. For every knowledge base K and p ≥ 1 the set
GModp(K) is compact and convex.

As a consequence of Lemma 2, we can draw conclusions from
inconsistent knowledge bases in a similar way like from consistent
ones. For instance, we could compute probability intervals like in
Nilsson’s Probabilistic Logic [10] or select a best probability func-
tion among all generalized models with respect to a strictly convex
(concave) evaluation function. We will generalize Maximum Entropy
reasoning here.

Definition 5. LetK be a knowledge base and p ≥ 1. The generalized
maximum entropy (ME) model GMEp(K) of K wrt. the p-norm is
defined as

GMEp(K) = arg max
P∈GModp(K)

H(P ) (3)

Proposition 3. For every knowledge base K and p ≥ 1 the general-
ized ME-model GMEp(K) exists and is uniquely defined.

Note that the definition of the generalized ME-model is exactly the
same as the definition of the classical ME-model, cf. Equation (1),
but instead of selecting it from the set of models of K we select
it from the set GModp(K) of generalized models of K. Therefore,
Proposition 3 also applies to inconsistent knowledge bases while the
classical ME-model exists only for consistent ones. However, the
following corollary states that the generalized ME-model coincides
with the conventional ME-model in the case of consistent knowledge
bases.

Corollary 1. For every p ≥ 1, if K is consistent then GMEp(K) =
ME(K).

It follows that our framework allows to generalize classical ME-
reasoning to inconsistent knowledge bases. Before we apply this ap-
proach to the problem of knowledge base consolidation we first give
a small example that illustrates the behavior of GMEp(K) itself.

Example 2. Suppose, we want to define a simple spam filter. We
consider the variables sp (spam), ss (suspicious subject), sc (suspi-
cious content) and the following knowledge base

K = 〈(sp)[0.25], (sp | ss)[0.8], (sp | sc)[0.6], (sc | sp)[0.7],

(ss | sp)[0.5], (sc | sp)[0.05], (ss | sp)[0.01]〉.

Note that K is inconsistent, i. e., there is no probability function that
satisfies all conditionals in K. However, the generalized ME-model
P ∗1 = GME1(K) satisfies all conditionals except (sp | ss)[0.8] and
(sp | sc)[0.6]. For the latter it yields the conditional probabilities
P ∗1 (sp | ss) = 0.94 and P ∗1 (sp | sc) = 0.82. Whereas most con-
ditionals are satisfied, the probability of (sp | sc)[0.6] is increased
significantly by 22%. As we increase p, we get more “balanced” de-
viations. For instance, P ∗2 = GME2(K) violates all conditionals but
the conditional probabilities deviate at most 14% from the original
probabilities stated in K. For p = ∞, the maximal deviation is only
about 10%.

4.2 Generalized ME-Consolidation
The probability function GMEp(K) provides a means for consistent
reasoning with inconsistent knowledge bases and will now serve as
the basis for defining our generalized ME-consolidation operator.

Definition 6. Let K = 〈(ψ1 |φ1)[d1], . . . , (ψm |φm)[dm]〉 be a
knowledge base, let p ≥ 1 and let P ∗ = GMEp(K). Then the gen-
eralized ME-consolidation operator ΓpME is defined as

ΓpME(K) = 〈(ψ1 |φ1)[d′1], . . . , (ψm |φm)[d′m]〉



with

d′i =

{
P ∗(ψi |φi) if P ∗(φi) > 0
di otherwise

for i = 1, . . . ,m.

If P ∗(ψi |φi) is not defined (this is the case if P ∗(φi) = 0) we
leave the probability of the conditional as it is, thus following the
minimal change paradigm. Note that due to P ∗(φi) = 0 the probab-
ility function P ∗ is a model of (ψi |φi)[d′i] for every value of d′i.

Example 3. Table 1 shows consolidated knowledge bases for the
spam filter from Example 2 for different values of p. Note that no
consolidation is Pareto-dominated by another one, that is, there are
no two consolidated knowledge bases such that all probabilities in
one are closer to the original probabilities than the probabilities in
the other.

K Γ1
ME(K) Γ2

ME(K) Γ∞ME(K)

(sp)[0.25] 0.25 0.24 0.23
(sp | ss)[0.8] 0.94 0.88 0.8
(sp | sc)[0.6] 0.82 0.74 0.7
(sc | sp)[0.7] 0.7 0.65 0.61
(ss | sp)[0.5] 0.5 0.49 0.5
(sc | sp)[0.05] 0.05 0.07 0.08
(ss | sp)[0.01] 0.01 0.02 0.04

Table 1. Probabilities of consolidated knowledge bases for p = 1, 2,∞.

The previous example showed that our approach provides mean-
ingful results for probabilistic knowledge base consolidation. In fact,
our approach also satisfies most of the rationality postulates dis-
cussed before.

Theorem 1. Let p ≥ 1. The consolidation operator ΓpME satisfies
Success, Consistency, Irrelevance of syntax, Weak IIA, IIA and Con-
tinuity. For 1 < p <∞, ΓpME also satisfies Non-dictatorship.

Arrow’s impossibility result [6] suggests that ΓpME cannot satisfy
Pareto-optimality as the classical versions of Non-dictatorship, IIA,
and Pareto-optimality are incompatible. However, note that we re-
phrased the postulates to match our probabilistic framework and
Arrow’s impossibility result does not necessarily carry over to our
framework. Indeed, empirical experiments suggest that ΓpME also sat-
isfies Pareto-optimality (for all p ≥ 1). However, no formal proof
has been found yet, so we can only give a conjecture on this.

Conjecture 1. The consolidation operator ΓpME satisfies Pareto-
optimality.

Before continuing with a discussion on the computational com-
plexity and implementation of generalized ME-Reasoning and the
generalized ME-consolidation operator, we conclude this subsection
with a simple corollary that nicely illustrates the compatibility of
classical ME-reasoning with generalized ME-reasoning and the gen-
eralized ME-consolidation operator.

Corollary 2. Let p ≥ 1 and let K be a knowledge base. Then

GMEp(K) = ME(ΓpME(K)).

The above corollary states that the generalized ME-model of any
knowledge base (consistent or inconsistent) is the same as the clas-
sical ME-model of the consistent knowledge base obtained by con-
solidating the original knowledge base.

4.3 Computational Issues and Implementation
Consolidating knowledge bases in our framework consists of two
phases. First, we compute the minimal violation measure with re-
spect to some p-norm. Then, we compute the generalized maximum
entropy model to consolidate the knowledge base.

The first problem, computing minimal violation measures, can be
solved by means of convex optimization. For p = 1 and p = ∞
we obtain particular efficient linear programs, see [13] for details.
For p = 2, computing the minimal violation measure is equivalent
to a least-squares problem which can be solved by quadratic pro-
gramming methods. The second problem, computing the general-
ized maximum entropy model, can also be solved by convex pro-
gramming methods. The computational difference to classical ME-
reasoning is that we need to compute IpΠ(K) first. As computing
minimal violation measures can be solved by convex programming
techniques, and maximizing entropy corresponds to a convex pro-
gramming problem, generalized ME-reasoning has the same asymp-
totic worst-case complexity as classical ME-reasoning. If we employ
interior-point methods naively, we can expect 10 to 100 iterations
with cost max{|Ω(At)|3, |Ω(At)|2 |K|} per iteration [1].

For 1 < p < ∞, Lemma 1 allows us to replace the convex con-
straint ‖AKP‖p = IpΠ(K) by the affine constraintAKP = ~xpK. As a
consequence, we can transform the corresponding optimization prob-
lem to an equivalent unconstrained problem that is easier to solve.

Proposition 4. Let K be a knowledge base, let 1 < p < ∞ and
let ~xpK be the violation vector of K with respect to p. If there is a
positive generalized model P ∈ GModp(K) then GMEp(K) is pos-
itive and can be computed by solving the following unconstrained
optimization problem:

Let n = |Ω(At)|, m = |K|, A = AK and let ~π : Rm+1 → Rn be
a function defined as

~π(~λ, µ) = (exp(

m∑
k=1

~λkAki + µ− 1))1≤i≤n (4)

and consider the optimization problem

arg min
(~λ,µ)∈Rm+1

∑
1≤i≤n

~π(~λ, µ)i − ~λT~xpK − µ. (5)

Then (5) has a solution (~λ∗, µ∗) and for each such solution it holds
that

GMEp(K) = ~π(~λ∗, µ∗).

Note that, in general, there might be no positive generalized model
as required by Proposition 4 to be applicable. Still, the optimiz-
ation problem yields a reasonable approximation in these cases.
To get the intuition, note that the objective in (5) is convex in ~λ
and µ. Therefore, the minimum is obtained in a stationary point
with gradient zero. The partial derivative with respect to ~λk is∑

1≤i≤nAki~π(~λ, µ)i−(~xpK)k and the partial derivative with respect

to µ is
∑

1≤i≤n ~π(~λ, µ)i − 1. Hence, in a stationary point, all con-
straints are satisfied (the solution is in particular positive, because
the exponential function yields only positive values). If there is no
positive generalized model, some Lagrange multipliers ~λk will tend
to infinity. However, a line-search method will follow a descent dir-
ection and as the objective decreases, the generalized ME-model is
approximated better and better.

The minimal violation inconsistency measure IpΠ, the computa-
tion of the generalized ME-model GMEp(K), and the generalized



ME-consolidation operator ΓpME have been prototypically implemen-
ted using Java in Tweety4 and are available under the GNU Gen-
eral Public License v3.0. We implemented general versions of these
three components for computing minimal violations by employing
the general optimization library OpenOpt5. As OpenOpt is a general
optimization library that may exhibit some numerical oddities, we
also implemented specialized versions of some of these components
for the Manhattan norm and the Euclidean norm (i. e. for the p-norm
with p = 1, 2) using the optimization solvers lpsolve6 and the math-
ematical library ojAlgo7 which (in general) provide better numerical
performance. To avoid numerical inaccuracy, the examples in this
work were computed with Matlab and CVX8. Links to the concrete
packages and classes can be found in the online appendix9.

5 Related Work

In [15] three approaches are proposed for restoring consistency in a
probabilistic knowledge base K. The first two approaches are very
similar to each other but follow the paradigm of qualitative modific-
ations of conditionals, cf. also [8]. In those approaches each probab-
ilistic conditional (ψi |φi)[di] ∈ K is extended to (ψi |φi ∧ wi)[di]
with a new proposition wi for i = 1, . . . ,m. By doing so, incon-
sistencies in the former knowledge base are resolved and a model
of the new knowledge base can be used to repair the probabilit-
ies in the old one. The third approach in [15] is a quantitative one
and uses generalized divergence as a distance measure to determ-
ine new probabilities. The idea is similar in spirit to our approach,
but instead of minimizing |P (ψφ) − dP (φ)|, roughly speaking, the
log-ratio log(P (ψφ)

P (ψφ)
d

1−d ) is minimized. Note that this term is zero if

P (ψ|φ) = 1 − d and P (ψ|φ) = d. Unfortunately, no justification
and no evaluation of any of these approaches is given in [15].

The work [2] also considers the issue of extending reasoning based
on the principle of maximum entropy to inconsistent knowledge
bases. There, a fuzzy interpretation is used to define a degree of sat-
isfaction for probability functions and knowledge bases.

The work [3] also proposes an approach to restore consistency in
probabilistic knowledge bases by modification of probabilities. How-
ever, the approach follows a heuristic paradigm and has to be guided
by the knowledge engineer by specifying importance of condition-
als. The approach itself then changes the probabilities in a step-wise
fashion, depending on the specified importance, until consistency is
restored. In contrast, our approach is principled as it is based on a
generalized approach to ME-reasoning. Furthermore, we have shown
that our consolidation approach satisfies several quality criteria.

It has also been proposed to directly change the probabilities in
an inconsistent knowledge base to a consistent one [16] or to re-
lax them to consistent probability intervals [12] by minimizing the
change of probabilities in the knowledge base. But while these ap-
proaches yield the best consolidation with respect to some distance
measure by definition, they are not necessarily uniquely determined
and are hard to compute in practice as they correspond to non-convex
optimization problems that suffer from the existence of non-global
local minima.

In [18] the authors discuss the problem of determining conditional
probability tables for Bayesian Networks given possibly inconsistent

4 http://mthimm.de/projects/tweety/
5 http://openopt.org/
6 http://lpsolve.sourceforge.net
7 http://ojalgo.org
8 http://cvxr.com/cvx/
9 http://www.mthimm.de/misc/pcons_ecai2014_proofs.pdf

information. While their motivation is similar to ours, the techniques
used are quite different and neither relationships to other fields such
as inconsistency minimization and belief merging nor an evaluation
in terms of quality wrt. desirable properties is conducted.

6 Summary and Conclusion
We solved the problem of consolidation of probabilistic knowledge
bases by proposing a new approach to inconsistency-tolerant reas-
oning based on the principle of maximal entropy. We introduced the
notion of generalized models of a probabilistic knowledge base that
is based upon inconsistency minimization and that enabled us to gen-
eralize the ME-model to inconsistent knowledge bases. We showed
that our approach satisfies several desirable properties and discussed
its computational complexity.

The generalization of ME-reasoning to inconsistent knowledge
bases deserves a deeper investigation than that was possible within
the scope of this paper. As part of future work we will investigate this
reasoning approach in more depth.
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